Changing estuaries and impacts on juvenile salmon: A systematic review.

Emma E Hodgson, Samantha M Wilson, Jonathan W Moore
Author Information
  1. Emma E Hodgson: Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada. ORCID
  2. Samantha M Wilson: Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada. ORCID
  3. Jonathan W Moore: Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.

Abstract

Estuaries are productive ecosystems providing important habitat for a diversity of species, yet they also experience intense levels of anthropogenic development. To inform decision-making, it is essential to understand the pathways of impacts of particular human activities, especially those that affect species such as salmon, which have high ecological, social-cultural and economic values. Salmon systems provide an opportunity to build from the substantial body of research on responses to estuary developments and take stock of what is known. We conducted a systematic English-language literature review on the responses of juvenile salmon to anthropogenic activities in estuaries and nearshore areas asking: what has been studied, where are the major knowledge gaps and how do stressors affect salmon? We found a substantial body of research (n = 167 studies; 1,369 comparative tests) to help understand responses of juvenile salmon to 24 activities and their 14 stressors. Across studies, 82% of the research was conducted in the eastern Pacific (Oregon and Washington, USA and British Columbia, Canada) showing a limited geographical scope. Using a semiquantitative approach to summarize the literature, including a weight-of-evidence metric, we found a range of results from low to moderate-high confidence in the consequences of the stressors. For example, we found moderate-high confidence in the negative impacts of pollutants and sea lice and moderate confidence in negative impacts from connectivity loss and changes in flow. Our results suggest that overall, multiple anthropogenic activities cause negative impacts across ecological scales. However, our results also reveal knowledge gaps resulting from minimal research on particular species (e.g. sockeye salmon), regions (e.g. Atlantic) or stressors (e.g. entrainment) that would be expedient areas for future research. With estuaries acting as a nexus of biological and societal importance and hotspots of ongoing development, the insights gained here can contribute to informed decision-making.

Keywords

References

  1. Astles, K. L., Holloway, M. G., Steffe, A., Green, M., Ganassin, C., & Gibbs, P. J. (2006). An ecological method for qualitative risk assessment and its use in the management of fisheries in New South Wales, Australia. Fisheries Research, 82, 290-303. https://doi.org/10.1016/j.fishres.2006.05.013
  2. Augerot, X., Foley, D. N., Steinback, C., Fuller, A., Fobes, N., & Spencer, K. (2005). Atlas of Pacific salmon: The first map-based status assessment of salmon in the North Pacific. Berkeley, CA: University of California Press.
  3. Aven, T., & Renn, O. (2009). On risk defined as an event where the outcome is uncertain. Journal of Risk Research, 12, 1-11. https://doi.org/10.1080/13669870802488883
  4. Barnthouse, L. W. (1992). The role of models in ecological risk assessment: A 1990's perspective. Environmental Toxicology and Chemistry, 11, 1751-1760. https://doi.org/10.1002/etc.5620111207
  5. Barragán, J. M., & de Andrés, M. (2015). Analysis and trends of the world's coastal cities and agglomerations. Ocean & Coastal Management, 114, 11-20. https://doi.org/10.1016/j.ocecoaman.2015.06.004
  6. Bax, N. J., Salo, E. O., Snyder, B. P., Simenstad, C. A., & Kinney, W. J. (1980). Salmon outmigration studies in Hood Canal: A summary of 1977. Salmonid ecosystems of the North Pacific (FRI-UW-801). Seattle, WA: Fisheries Research Institute, College of Fisheries, University of Washington.
  7. Beamish, R. J., Mahnken, C., & Neville, C. M. (2004). Evidence that reduced early marine growth is associated with lower marine survival of Coho salmon. Transactions of the American Fisheries Society, 133(1), 26-33. https://doi.org/10.1577/T03-028
  8. Beck, M. W., Heck, K. L., Able, K. W., Childers, D. L., Eggleston, D. B., Gillanders, B. M., … Weinstein, M. P. (2001). The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: A better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. BioScience, 51(8), 633-641. https://doi.org/10.1641/0006-3568(2001)051[0633:TICAMO]2.0.CO;2
  9. Brett, J. R. (1967). Swimming performance of sockeye salmon (Oncorhynchus nerka) in relation to fatigue time and temperature. Journal of the Fisheries Research Board of Canada, 24(8), 1731-1741. https://doi.org/10.1139/f67-142
  10. Brett, J. R. (1971). Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and freshwater ecology of sockeye salmon (Oncorhynchus nerkd). Integrative and Comparative Biology, 11(1), 99-113. https://doi.org/10.1093/icb/11.1.99
  11. Brophy, L. S., Greene, C. M., Hare, V. C., Holycross, B., Lanier, A., Heady, W. N., … Dana, R. (2019). Insights into estuary habitat loss in the western United States using a new method for mapping maximum extent of tidal wetlands. PLoS ONE, 14(8), e0218558. https://doi.org/10.1371/journal.pone.0218558
  12. Clarke Murray, C., Mach, M. E., & Martone, R. G. (2014). Cumulative effects in marine ecosystems: Scientific perspectives on its challenges and solutions. Vancouver, BC and Monterey, CA: WWF-Canada and Center For Ocean Solutions, 60 pp.
  13. Cloern, J. E., Abreu, P. C., Carstensen, J., Chauvaud, L., Elmgren, R., Grall, J., … Yin, K. (2016). Human activities and climate variability drive fast-paced change across the world's estuarine-coastal ecosystems. Global Change Biology, 22(2), 513-529. https://doi.org/10.1111/gcb.13059
  14. Colombi, B. J. (2009). Salmon nation: Climate change and tribal sovereignty. In S. A. Crate & M. Nuttall (Eds.), Anthropology and climate change (pp. 186-196). New York, NY: Walnut Creek/Left Coast Press.
  15. Connors, B. M., Braun, D. C., Peterman, R. M., Cooper, A. B., Reynolds, J. D., Dill, L. M., … Krkošek, M. (2012). Migration links ocean-scale competition and local ocean conditions with exposure to farmed salmon to shape wild salmon dynamics. Conservation Letters, 5(4), 304-312. https://doi.org/10.1111/j.1755-263X.2012.00244.x
  16. Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., … van den Belt, M. (1997). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260. https://doi.org/10.1038/387253a0
  17. David, A. T., Simenstad, C. A., Cordell, J. R., Toft, J. D., Ellings, C. S., Gray, A., & Berge, H. B. (2016). Wetland loss, juvenile salmon foraging performance, and density dependence in Pacific Northwest Estuaries. Estuaries and Coasts, 39(3), 767-780. https://doi.org/10.1007/s12237-015-0041-5
  18. Duffy, E. J., & Beauchamp, D. A. (2011). Rapid growth in the early marine period improves the marine survival of Chinook salmon (Oncorhynchus tshawytscha) in Puget Sound, Washington. Canadian Journal of Fisheries and Aquatic Sciences, 68(2), 232-240. https://doi.org/10.1139/F10-144
  19. Elliott, M., & Whitfield, A. K. (2011). Challenging paradigms in estuarine ecology and management. Estuarine, Coastal and Shelf Science, 94(4), 306-314. https://doi.org/10.1016/j.ecss.2011.06.016
  20. Feist, B. E., Anderson, J. J., & Miyamoto, R. (1992). Potential impacts of pile driving on juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon behavior and distribution. Puget Sounds Final Report.
  21. Foley, M. M., Mease, L. A., Martone, R. G., Prahler, E. E., Morrison, T. H., Murray, C. C., & Wojcik, D. (2017). The challenges and opportunities in cumulative effects assessment. Environmental Impact Assessment Review, 62, 122-134. https://doi.org/10.1016/j.eiar.2016.06.008
  22. Greco, T., Zangrillo, A., Biondi-Zoccai, G., & Landoni, G. (2013). Meta-analysis: Pitfalls and hints. Heart, Lung and Vessels, 5, 219-225. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868184/
  23. Groot, C., & L. Margolis (Eds.). (1991). Pacific salmon life histories. Vancouver, Canada: UBC Press.
  24. Gustafson, R. G., Waples, R. S., Myers, J. M., Weitkamp, L. A., Bryant, G. J., Johnson, O. W., & Hard, J. J. (2007). Pacific salmon extinctions: Quantifying lost and remaining diversity. Conservation Biology, 21(4), 1009-1020. https://doi.org/10.1111/j.1523-1739.2007.00693.x
  25. Healey, M. C. (1982). In V. Kennedy (Ed.), Juvenile Pacific salmon in estuaries: The life support system (pp. 315-341). New York, NY: Academic Press. https://doi.org/10.1016/B978-0-12-404070-0.50025-9
  26. Healey, M. (2011). The cumulative impacts of climate change on Fraser River sockeye salmon (Oncorhynchus nerka) and implications for management. Canadian Journal of Fisheries and Aquatic Sciences, 68, 718-737. https://doi.org/10.1139/f2011-010
  27. Hodgson, E. E., Halpern, B. S., & Essington, T. E. (2019). Moving beyond silos in cumulative effects assessment. Frontiers in Ecology and Evolution, 7(211). https://doi.org/10.3389/fevo.2019.00211
  28. Holsman, K., Samhouri, J., Cook, G., Hazen, E., Olsen, E., Dillard, M., … Andrews, K. (2017). An ecosystem-based approach to marine risk assessment. Ecosystem Health and Sustainability, 3, e01256. https://doi.org/10.1002/ehs2.1256
  29. Huntington, C., Nehlsen, W., & Bowers, J. (1996). A survey of healthy native stocks of anadromous salmonids in the Pacific Northwest and California. Fisheries, 21(3), 6-14. https://doi.org/10.1577/1548-8446(1996)021<0006:ASOHNS>2.0.CO;2
  30. Impact Assessment Act. (2019). Impact Assessment Act. Canada.
  31. ISO, I. O. of S. 31000 (2009). Risk management; principles and guidelines. Geneva, Switzerland: International Organisation of Standards.
  32. Johnson, L., Anulacion, B., Arkoosh, M., Olson, O. P., Sloan, C., Sol, S. Y., … Ylitalo, G. (2013). Persistent organic pollutants in juvenile Chinook Salmon in the Columbia River Basin: Implications for stock recovery. Transactions of the American Fisheries Society, 142(1), 21-40. https://doi.org/10.1080/00028487.2012.720627
  33. Johnson, L. L., Ylitalo, G. M., Arkoosh, M. R., Kagley, A. N., Stafford, C., Bolton, J. L., … Collier, T. K. (2007). Contaminant exposure in outmigrant juvenile salmon from Pacific Northwest estuaries of the United States. Environmental Monitoring and Assessment, 124(1), 167-194. https://doi.org/10.1007/s10661-006-9216-7
  34. Kienast, F., Wildi, O., & Brzeziecki, B. (1998). Potential impacts of climate change on species richness in mountain forests - An ecological risk assessment. Biological Conservation, 83(3), 291-305. https://doi.org/10.1016/S0006-3207(97)00085-2
  35. Levings, C. D. (2016). Ecology of salmonids in estuaries around the world: Adaptations, habitats, and conservation. Vancouver: University of British Columbia Press.
  36. Levy, D. A., Northcote, T. G., & Barr, R. M. (1982). Effects of estuarine log storage on juvenile salmon. Vancouver, BC: Westwater Research Centre, University of British Columbia.
  37. Limburg, K. E. (1999). Estuaries, ecology, and economic decisions: An example of perceptual barriers and challenges to understanding. Ecological Economics, 30(1), 185-188. https://doi.org/10.1016/S0921-8009(99)00045-2
  38. Lotze, H. K. (2010). Historical reconstruction of human-induced changes in US estuaries. In R. N. Gibson, R. J. A. Atkinson, & J. D. M. Gordon (Eds.), Oceanography and marine biology: An annual review (Vol. 48, pp. 267-338). ‎Boca Raton, FL: CRC Press.
  39. Lotze, H. K., Lenihan, H. S., Bourque, B. J., Bradbury, R. H., Cooke, R. G., Kay, M. C., … Jackson, J. B. C. (2006). Depletion, degradation, and recovery potential of estuaries and coastal seas. Science, 312(5781), 1806-1809. http://science.sciencemag.org/content/312/5781/1806.abstract https://doi.org/10.1126/science.1128035
  40. Mach, M. E., Martone, R. G., & Chan, K. M. A. (2015). Human impacts and ecosystem services: Insufficient research for trade-off evaluation. Ecosystem Services, 16, 112-120. https://doi.org/10.1016/j.ecoser.2015.10.018
  41. Magnusson, A., & Hilborn, R. (2003). Estuarine influence on survival rates of coho (Oncorhynchus kisutch) and Chinook Salmon (Oncorhynchus tshawytscha) released from hatcheries on the U.S. Pacific coast. Estuaries, 26(4), 1094-1103. https://doi.org/10.1007/BF02803366
  42. Mastrandrea, M. D., Field, C. B., Stocker, T. F., Edenhofer, O., Ebi, K. L., Frame, D. J., … Zwiers, F. W. (2010). Guidance note for lead authors of the IPCC fifth assessment report on consistent treatment of uncertainties. Intergovernmental Panel on Climate Change (IPCC). Retrieved from https://www.ipcc.ch/site/assets/uploads/2017/08/AR5_Uncertainty_Guidance_Note.pdf
  43. Meador, J. P. (2013). Do chemically contaminated river estuaries in Puget Sound (Washington, USA) affect the survival rate of hatchery-reared Chinook salmon? Canadian Journal of Fisheries and Aquatic Sciences, 71(1), 162-180. https://doi.org/10.1139/cjfas-2013-0130
  44. Moore, J. W., Carr-Harris, C., Gottesfeld, A. S., MacIntyre, D., Radies, D., Cleveland, M., … Shepert, B. (2015). Selling First Nations down the river. Science, 349(6248), 596. https://doi.org/10.1126/science.349.6248.596-a
  45. Moore, J. W., Gordon, J., Carr-Harris, C., Gottesfeld, A. S., Wilson, S. M., & Russell, J. H. (2016). Assessing estuaries as stopover habitats for juvenile Pacific salmon. Marine Ecology Progress Series, 559, 201-215. https://doi.org/10.3354/meps11933
  46. Moore, J. W., Nowlan, L., Olszynski, M., Jacob, A. L., Favaro, B., Collins, L., … Weitz, J. (2018). Towards linking environmental law and science. FACETS, 3(1), 375-391. https://doi.org/10.1139/facets-2017-0106
  47. Moss, J. H., Beauchamp, D. A., Cross, A. D., Myers, K. W., Farley, E. V. Jr, Murphy, J. M., & Helle, J. H. (2005). Evidence for size-selective mortality after the first summer of ocean growth by pink salmon. Transactions of the American Fisheries Society, 134(5), 1313-1322. https://doi.org/10.1577/T05-054.1
  48. Munsch, S. H., Cordell, J. R., & Toft, J. D. (2016). Fine-scale habitat use and behavior of a nearshore fish community: Nursery functions, predation avoidance, and spatiotemporal habitat partitioning. Marine Ecology Progress Series, 557, 1-15. https://doi.org/10.3354/meps11862
  49. Munsch, S. H., Cordell, J. R., Toft, J. D., & Morgan, E. E. (2014). Effects of seawalls and piers on fish assemblages and juvenile salmon feeding behavior. North American Journal of Fisheries Management, 34(4), 814-827. https://doi.org/10.1080/02755947.2014.910579
  50. Murray, C. C., Wong, J., Singh, G. G., Mach, M., Lerner, J., Ranieri, B., … Chan, K. M. A. (2018). The insignificance of thresholds in environmental impact assessment: An illustrative case study in Canada. Environmental Management, 61(6), 1062-1071. https://doi.org/10.1007/s00267-018-1025-6
  51. Nagelkerken, I., Sheaves, M., Baker, R., & Connolly, R. M. (2015). The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish and Fisheries, 16(2), 362-371. https://doi.org/10.1111/faf.12057
  52. Naiman, R. J., Bilby, R. E., Schindler, D. E., & Helfield, J. M. (2002). Pacific salmon, nutrients, and the dynamics of freshwater and riparian ecosystems. Ecosystems, 5(4), 399-417. https://doi.org/10.1007/s10021-001-0083-3
  53. Noble, B., & Birk, J. (2011). Comfort monitoring? Environmental assessment follow-up under community-industry negotiated environmental agreements. Environmental Impact Assessment Review, 31(1), 17-24. https://doi.org/10.1016/j.eiar.2010.05.002
  54. Nobre, A. M. (2011). Scientific approaches to address challenges in coastal management. Marine Ecology Progress Series, 434, 279-289. https://doi.org/10.3354/meps09250
  55. NRC (1983). Risk assessment in the federal government: Managing the process. Washington, DC: National Research Council, National Academies Press.
  56. O'Neill, S. M., Carey, A. J., Lanksbury, J. A., Niewolny, L. A., Ylitalo, G., Johnson, L., & West, J. E. (2015). Toxic contaminants in juvenile Chinook salmon (Oncorhynchus tshawytscha) migrating through estuary, nearshore and offshore habitats of Puget Sound. Washington Department of Fish and Wildlife Report FBT, 2-16.
  57. Peterson, M. S., Comyns, B. H., Hendon, J. R., Bond, P. J., & Duff, G. A. (2000). Habitat use by early life-history stages of fishes and crustaceans along a changing estuarine landscape: Differences between natural and altered shoreline sites. Wetlands Ecology and Management, 8(2), 209-219. https://doi.org/10.1023/A:1008452805584
  58. Price, M. H. H., Morton, A., & Reynolds, J. D. (2010). Evidence of farm-induced parasite infestations on wild juvenile salmon in multiple regions of coastal British Columbia, Canada. Canadian Journal of Fisheries and Aquatic Sciences, 67(12), 1925-1932. https://doi.org/10.1139/F10-105
  59. Prinslow, T. E., Salo, E. O., Dawson, J. J., Bax, N. J., Snyder, B. P., & Whitmus, C. J. (1980). Effects of wharf lighting on outmigrating salmon, 1979 (FRI-UW-800). Seattle, WA: Fisheries Research Institute, College of Fisheries, University of Washington.
  60. Quinn, T. P. (2018). The behavior and ecology of Pacific salmon and trout. Seattle, WA: University of Washington Press.
  61. Ruckelshaus, M. H., Levin, P., Johnson, J. B., & Kareiva, P. M. (2002). The pacific salmon wars: What science brings to the challenge of recovering species. Annual Review of Ecology and Systematics, 33(1), 665-706. https://doi.org/10.1146/annurev.ecolsys.33.010802.150504
  62. Scott, D. C. A. (2014). Flood mitigation structures transform tidal creeks from nurseries for native fish to non-native hotspots. Thesis, Simon Fraser University.
  63. Simmons, R., Quinn, T., Seeb, L., Schindler, D., & Hilborn, R. (2013). Role of estuarine rearing for sockeye salmon in Alaska (USA). Marine Ecology Progress Series, 481, 211-223. https://doi.org/10.3354/meps10190
  64. Singh, G. G., Lerner, J., Mach, M., Clarke Murray, C., Ranieri, B., Peterson St-Laurent, G., … Chan, K. (2018). Scientific shortcomings in environmental impact statements internationally. PeerJ Preprints, 6, e27409v1. https://doi.org/10.7287/peerj.preprints.27409v1
  65. Smith, D. W., Prinslow, T. E., Salo, E. O., Campbell, R. A., & Snyder, B. P. (1979). Trident dredging study: The effects of dredging at the US Naval submarine base at Bangor on outmigrating juvenile chum salmon in Hood Canal, WA (FRI-UW 7918). Seattle, WA: Fisheries Research Institute, College of Fisheries, University of Washington.
  66. Stein, J. E., Hom, T., Collier, T. K., Brown, D. W., & Varanasi, U. (1995). Contaminant exposure and biochemical effects in outmigrant juvenile chinook salmon from urban and nonurban estuaries of puget sound, Washington. Environmental Toxicology and Chemistry, 14(6), 1019-1029. https://doi.org/10.1002/etc.5620140613
  67. Sturdevant, M. V. (1996). Diets of juvenile pink and chum salmon in oiled and non-oiled nearshore habitats in Prince William Sound, 1989-90. In S. D. Rice, R. B. Spies, D. A. Wolfe, & B. A. Wright (Eds.), Proceedings of the Exxon Valdez Oil Spill Symposium, American Fisheries Society Symposium 28 (Vol. 18, pp. 578-592). American Fisheries Society.
  68. Taylor, H. F. (1922). Deductions concerning the air bladder and the specific gravity of fishes, Bulletin of the US Bureau of Fisheries, 38, 121-126.
  69. Thorpe, J. E. (1994). Salmonid fishes and the estuarine environment. Estuaries, 17(1), 76-93. https://doi.org/10.2307/1352336
  70. Toft, J. D., Cordell, J. R., Simenstad, C. A., & Stamatiou, L. A. (2007). Fish distribution, abundance, and behavior along city shoreline types in Puget Sound. North American Journal of Fisheries Management, 27(2), 465-480. https://doi.org/10.1577/M05-158.1
  71. Toft, J. D., Munsch, S. H., Cordell, J. R., Siitari, K., Hare, V. C., Holycross, B. M., … Hughes, B. B. (2018). Impact of multiple stressors on juvenile fish in estuaries of the northeast Pacific. Global Change Biology, 24(5), 2008-2020. https://doi.org/10.1111/gcb.14055
  72. van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: A review. Environmental Toxicology and Pharmacology, 13(2), 57-149. https://doi.org/10.1016/S1382-6689(02)00126-6
  73. Varanasi, U., Casillas, E., Arkoosh, M. R., Hom, T., Misitano, D. A., Brown, D. W., … Stein, J. E. (1993). Contaminant exposure and associated biological effects in juvenile chinook salmon (Oncorhynchus tshawytscha) from urban and nonurban estuaries of Puget Sound. US Department of Commerce, National Oceanic and Atmospheric Administration Technical Memorandum. NMFS-NWFSC-8.
  74. Weitkamp, L. A., Goulette, G., Hawkes, J., O'Malley, M., & Lipsky, C. (2014). Juvenile salmon in estuaries: Comparisons between North American Atlantic and Pacific salmon populations. Reviews in Fish Biology and Fisheries, 24(3), 713-736. https://doi.org/10.1007/s11160-014-9345-y

Grants

  1. /Liber Ero Postdoctoral Fellowship Program
  2. /Vanier Canadian Graduate Scholarship
  3. /American Fisheries Society: Michael Stevenson Scholarship
  4. /American Fisheries Society: Steven Berkeley Marine Conservation Fellowship
  5. /Liber Ero Research Chair in Coastal Science and Management

Word Cloud

Created with Highcharts 10.0.0impactssalmonresearchstressorsactivitiesspeciesanthropogenicresponsesjuvenileestuariesfoundresultsconfidencenegativeegalsodevelopmentdecision-makingunderstandparticularaffectecologicalsubstantialbodyestuaryconductedsystematicliteraturereviewareasknowledgegapsstudiesmoderate-highEstuariesproductiveecosystemsprovidingimportanthabitatdiversityyetexperienceintenselevelsinformessentialpathwayshumanespeciallyhighsocial-culturaleconomicvaluesSalmonsystemsprovideopportunitybuilddevelopmentstakestockknownEnglish-languagenearshoreasking:studiedmajorsalmon?n = 1671369comparativetestshelp2414Across82%easternPacificOregonWashingtonUSABritishColumbiaCanadashowinglimitedgeographicalscopeUsingsemiquantitativeapproachsummarizeincludingweight-of-evidencemetricrangelowconsequencesexamplepollutantssealicemoderateconnectivitylosschangesflowsuggestoverallmultiplecauseacrossscalesHoweverrevealresultingminimalsockeyeregionsAtlanticentrainmentexpedientfutureactingnexusbiologicalsocietalimportancehotspotsongoinginsightsgainedcancontributeinformedChangingsalmon:environmentalimpactassessmentsmolt

Similar Articles

Cited By