Reference gene selection and myosin heavy chain (MyHC) isoform expression in muscle tissues of domestic yak (Bos grunniens).

Xiaoyun Wu, Xuelan Zhou, Xuezhi Ding, Min Chu, Chunnian Liang, Jie Pei, Lin Xiong, Pengjia Bao, Xian Guo, Ping Yan
Author Information
  1. Xiaoyun Wu: Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China.
  2. Xuelan Zhou: Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China.
  3. Xuezhi Ding: Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China.
  4. Min Chu: Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China.
  5. Chunnian Liang: Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China.
  6. Jie Pei: Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China.
  7. Lin Xiong: Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China.
  8. Pengjia Bao: Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China.
  9. Xian Guo: Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China.
  10. Ping Yan: Key Lab of Yak Breeding Engineering, Gansu Province, Lanzhou, China. ORCID

Abstract

Domestic yak (Bos grunniens) is the most crucial livestock in the Qinghai-Tibetan Plateau, providing meat and other necessities for local people. The skeletal muscle of adult livestock is composed of muscle fibers, and fiber composition in muscle has influence on meat qualities, such as tenderness, pH, and color. Real-time quantitative polymerase chain reaction (RT-qPCR) is a powerful tool to evaluate the gene expression of muscle fiber, but the normalization of the data depends on the stability of expressed reference genes. Unfortunately, there is no consensus for an ideal reference gene for data normalization in muscle tissues of yak. In this study, we aimed to assess the stability of 14 commonly used candidate reference genes by using five algorithms (GeNorm, NormFinder, BestKeeper, Delat Ct and Refinder). Our results suggested UXT and PRL13A were the most stable reference genes, while the most commonly used reference gene, GAPDH, was most variably expressed across different muscle tissues. We also found that the extensor digitorum lateralis (EDL), trapezius pars thoracica (TPT), and psoas major (PM) muscle had the higher content of type I muscle fibers and the lowest content of type IIB muscle fibers, while gluteobiceps (GB) muscle had the highest content of type IIB muscle fibers. Our study provides the suitable reference genes for accurate analysis of yak muscle fiber composition.

References

  1. J Neuromuscul Dis. 2018;5(2):177-191 [PMID: 29614692]
  2. Meat Sci. 2008 Oct;80(2):363-9 [PMID: 22063341]
  3. Meat Sci. 1999 Sep;53(1):1-7 [PMID: 22062926]
  4. Cell. 2003 Oct 17;115(2):187-98 [PMID: 14567916]
  5. BMC Res Notes. 2011 Oct 24;4:441 [PMID: 22023805]
  6. Histochem Cell Biol. 2001 May;115(5):359-72 [PMID: 11449884]
  7. J Cell Sci. 2007 Nov 15;120(Pt 22):4025-34 [PMID: 17971411]
  8. Meat Sci. 2010 Feb;84(2):257-70 [PMID: 20374784]
  9. Physiol Genomics. 2004 Jul 08;18(2):226-31 [PMID: 15161965]
  10. Electrophoresis. 2013 May;34(9-10):1255-61 [PMID: 23463416]
  11. Physiol Res. 2013;62(4):445-53 [PMID: 23590611]
  12. Nat Rev Mol Cell Biol. 2012 May 23;13(6):355-69 [PMID: 22617470]
  13. PLoS One. 2016 Jan 25;11(1):e0147705 [PMID: 26808329]
  14. BMC Mol Biol. 2008 Sep 11;9:79 [PMID: 18786244]
  15. J Biotechnol. 2010 Nov;150(3):288-93 [PMID: 20887758]
  16. Animal. 2013 Aug;7(8):1344-53 [PMID: 23552195]
  17. Meat Sci. 2010 Oct;86(2):456-61 [PMID: 20598446]
  18. J Neurooncol. 2015 May;123(1):35-42 [PMID: 25862007]
  19. Animals (Basel). 2019 Nov 10;9(11): [PMID: 31717620]
  20. Meat Sci. 2011 Jul;88(3):535-41 [PMID: 21371827]
  21. Cancer Res. 2004 Aug 1;64(15):5245-50 [PMID: 15289330]
  22. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  23. Meat Sci. 2013 Dec;95(4):828-36 [PMID: 23702339]
  24. PLoS One. 2014 Feb 11;9(2):e88653 [PMID: 24523926]
  25. Methods. 2010 Apr;50(4):227-30 [PMID: 19969088]
  26. Anat Histol Embryol. 2018 Dec;47(6):583-590 [PMID: 30178622]
  27. Sci Rep. 2019 May 17;9(1):7558 [PMID: 31101838]
  28. Mol Biotechnol. 2013 May;54(1):47-57 [PMID: 22531949]
  29. Int J Mol Sci. 2015 Apr 29;16(5):9635-53 [PMID: 25938964]
  30. Biochem Biophys Res Commun. 2010 Sep 3;399(4):531-6 [PMID: 20678479]
  31. Plant Mol Biol. 2012 Jan 31;: [PMID: 22290409]
  32. Mol Cell Biol. 2011 Sep;31(17):3639-52 [PMID: 21730289]
  33. J Dairy Sci. 2014 Feb;97(2):902-10 [PMID: 24342693]
  34. Semin Cell Dev Biol. 2017 Dec;72:10-18 [PMID: 29127045]
  35. Vet Immunol Immunopathol. 2007 May 15;117(1-2):55-66 [PMID: 17346803]
  36. Meat Sci. 2005 Jan;69(1):17-25 [PMID: 22062635]
  37. Sci Rep. 2018 Jun 13;8(1):9001 [PMID: 29899556]
  38. PLoS One. 2015 May 28;10(5):e0127935 [PMID: 26020643]
  39. PLoS One. 2015 Mar 20;10(3):e0121280 [PMID: 25794179]
  40. Sci Rep. 2018 Jan 31;8(1):1949 [PMID: 29386530]
  41. J Muscle Res Cell Motil. 1995 Feb;16(1):35-43 [PMID: 7751403]
  42. Sci Rep. 2018 Feb 20;8(1):3364 [PMID: 29463845]
  43. Mol Cell Probes. 2016 Jun;30(3):161-7 [PMID: 26971673]
  44. Biotechnol Lett. 2004 Mar;26(6):509-15 [PMID: 15127793]
  45. Biol Proced Online. 2010 Nov 11;13:1 [PMID: 21369532]
  46. BMC Biotechnol. 2006 Oct 09;6:41 [PMID: 17026777]
  47. Zoolog Sci. 2004 May;21(5):589-96 [PMID: 15170063]
  48. Meat Sci. 2010 Oct;86(2):436-9 [PMID: 20579813]
  49. Physiol Rev. 2011 Oct;91(4):1447-531 [PMID: 22013216]
  50. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  51. PLoS One. 2018 Mar 6;13(3):e0191558 [PMID: 29509770]
  52. BMC Mol Biol. 2006 Oct 06;7:33 [PMID: 17026756]
  53. PeerJ. 2018 Apr 3;6:e4535 [PMID: 29632740]
  54. Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13108-13 [PMID: 11606756]

MeSH Term

Animals
Animals, Domestic
Cattle
Gene Expression
Genes, Essential
Male
Meat
Muscle Fibers, Skeletal
Muscle, Skeletal
Myosin Heavy Chains
Protein Isoforms
Real-Time Polymerase Chain Reaction
Reference Standards

Chemicals

Protein Isoforms
Myosin Heavy Chains

Word Cloud

Created with Highcharts 10.0.0musclereferenceyakfibersgenegenesfibertissuescontenttypeBosgrunnienslivestockmeatcompositionchainexpressionnormalizationdatastabilityexpressedstudycommonlyusedIIBDomesticcrucialQinghai-TibetanPlateauprovidingnecessitieslocalpeopleskeletaladultcomposedinfluencequalitiestendernesspHcolorReal-timequantitativepolymerasereactionRT-qPCRpowerfultoolevaluatedependsUnfortunatelyconsensusidealaimedassess14candidateusingfivealgorithmsGeNormNormFinderBestKeeperDelatCtRefinderresultssuggestedUXTPRL13AstableGAPDHvariablyacrossdifferentalsofoundextensordigitorumlateralisEDLtrapeziusparsthoracicaTPTpsoasmajorPMhigherlowestgluteobicepsGBhighestprovidessuitableaccurateanalysisReferenceselectionmyosinheavyMyHCisoformdomestic

Similar Articles

Cited By