Combining HF rTMS over the Left DLPFC with Concurrent Cognitive Activity for the Offline Modulation of Working Memory in Healthy Volunteers: A Proof-of-Concept Study.

Ilya Bakulin, Alfiia Zabirova, Dmitry Lagoda, Alexandra Poydasheva, Anastasiia Cherkasova, Nikolay Pavlov, Peter Kopnin, Dmitry Sinitsyn, Elena Kremneva, Maxim Fedorov, Elena Gnedovskaya, Natalia Suponeva, Michael Piradov
Author Information
  1. Ilya Bakulin: Research Center of Neurology, Volokolamskoe shosse, 80, Moscow 125367, Russia.
  2. Alfiia Zabirova: Research Center of Neurology, Volokolamskoe shosse, 80, Moscow 125367, Russia.
  3. Dmitry Lagoda: Research Center of Neurology, Volokolamskoe shosse, 80, Moscow 125367, Russia.
  4. Alexandra Poydasheva: Research Center of Neurology, Volokolamskoe shosse, 80, Moscow 125367, Russia.
  5. Anastasiia Cherkasova: Research Center of Neurology, Volokolamskoe shosse, 80, Moscow 125367, Russia.
  6. Nikolay Pavlov: Research Center of Neurology, Volokolamskoe shosse, 80, Moscow 125367, Russia.
  7. Peter Kopnin: Research Center of Neurology, Volokolamskoe shosse, 80, Moscow 125367, Russia.
  8. Dmitry Sinitsyn: Research Center of Neurology, Volokolamskoe shosse, 80, Moscow 125367, Russia.
  9. Elena Kremneva: Research Center of Neurology, Volokolamskoe shosse, 80, Moscow 125367, Russia.
  10. Maxim Fedorov: Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, territory of innovation center «Skolkovo», Moscow 121205, Russia.
  11. Elena Gnedovskaya: Research Center of Neurology, Volokolamskoe shosse, 80, Moscow 125367, Russia.
  12. Natalia Suponeva: Research Center of Neurology, Volokolamskoe shosse, 80, Moscow 125367, Russia.
  13. Michael Piradov: Research Center of Neurology, Volokolamskoe shosse, 80, Moscow 125367, Russia.

Abstract

It has been proposed that the effectiveness of non-invasive brain stimulation (NIBS) as a cognitive enhancement technique may be enhanced by combining the stimulation with concurrent cognitive activity. However, the benefits of such a combination in comparison to protocols without ongoing cognitive activity have not yet been studied. In the present study, we investigate the effects of fMRI-guided high-frequency repetitive transcranial magnetic stimulation (HF rTMS) over the left dorsolateral prefrontal cortex (DLPFC) on working memory (WM) in healthy volunteers, using an n-back task with spatial and verbal stimuli and a spatial span task. In two combined protocols (TMS + WM + (maintenance) and TMS + WM + (rest)) trains of stimuli were applied in the maintenance and rest periods of the modified Sternberg task, respectively. We compared them to HF rTMS without a cognitive load (TMS + WM-) and control stimulation (TMS - WM + (maintenance)). No serious adverse effects appeared in this study. Among all protocols, significant effects on WM were shown only for the TMS + WM- with oppositely directed influences of this protocol on storage and manipulation in spatial WM. Moreover, there was a significant difference between the effects of TMS + WM- and TMS + WM + (maintenance), suggesting that simultaneous cognitive activity does not necessarily lead to an increase in TMS effects.

Keywords

References

  1. Neuropsychology. 2005 Mar;19(2):223-32 [PMID: 15769206]
  2. Biol Psychiatry. 2013 Mar 15;73(6):510-7 [PMID: 23039931]
  3. Front Hum Neurosci. 2015 Jun 16;9:303 [PMID: 26136672]
  4. J Neurophysiol. 1973 Jan;36(1):61-78 [PMID: 4196203]
  5. Psychon Bull Rev. 2002 Dec;9(4):637-71 [PMID: 12613671]
  6. Hum Brain Mapp. 2014 Jan;35(1):140-51 [PMID: 22965696]
  7. Hum Brain Mapp. 2018 Feb;39(2):783-802 [PMID: 29124791]
  8. Clin Neurophysiol. 2009 Dec;120(12):2008-2039 [PMID: 19833552]
  9. Prog Neuropsychopharmacol Biol Psychiatry. 2019 Mar 8;89:347-360 [PMID: 30312634]
  10. PLoS One. 2019 Mar 22;14(3):e0213707 [PMID: 30901345]
  11. Neuropsychologia. 1971 Mar;9(1):97-113 [PMID: 5146491]
  12. Neurophysiol Clin. 2010 Mar;40(1):1-5 [PMID: 20230930]
  13. Cereb Cortex. 2016 Dec;26(12):4563-4573 [PMID: 26400923]
  14. PLoS One. 2018 Mar 27;13(3):e0194878 [PMID: 29584781]
  15. Brain Cogn. 2014 Apr;86:1-9 [PMID: 24514153]
  16. Neurosci Biobehav Rev. 2019 Dec;107:47-58 [PMID: 31473301]
  17. Brain Sci. 2017 Apr 27;7(5): [PMID: 28448453]
  18. PLoS One. 2015 Mar 17;10(3):e0120640 [PMID: 25781012]
  19. Neuroimage. 2014 Jan 15;85 Pt 3:1058-68 [PMID: 23880500]
  20. J Cogn Neurosci. 2006 Oct;18(10):1712-22 [PMID: 17014375]
  21. Neuroscience. 2017 Nov 5;363:134-141 [PMID: 28893648]
  22. Clin Neurophysiol. 2015 Jun;126(6):1071-1107 [PMID: 25797650]
  23. Curr Top Behav Neurosci. 2018;37:213-230 [PMID: 27677777]
  24. J Neurosci Methods. 2014 Jan 30;222:250-9 [PMID: 24269254]
  25. J Exp Psychol. 1958 Apr;55(4):352-8 [PMID: 13539317]
  26. Clin Neurophysiol. 2014 Nov;125(11):2150-2206 [PMID: 25034472]
  27. Neurosci Biobehav Rev. 2017 Dec;83:381-404 [PMID: 29032089]
  28. J Neurol Sci. 2018 Jan 15;384:15-20 [PMID: 29249371]
  29. Neuropsychologia. 2001;39(4):415-9 [PMID: 11164880]
  30. Science. 1971 Aug 13;173(3997):652-4 [PMID: 4998337]
  31. Nat Commun. 2019 Feb 25;10(1):936 [PMID: 30804436]
  32. eNeuro. 2018 Feb 14;5(1): [PMID: 29464194]
  33. Hum Brain Mapp. 2019 Dec 1;40(17):4912-4933 [PMID: 31373730]
  34. Clin Neurophysiol. 2013 Mar;124(3):536-44 [PMID: 22986284]
  35. Front Psychol. 2018 May 17;9:741 [PMID: 29867693]
  36. Front Psychol. 2014 Dec 23;5:1475 [PMID: 25566149]
  37. Science. 1966 Aug 5;153(3736):652-4 [PMID: 5939936]
  38. J Magn Reson Imaging. 2013 Mar;37(3):501-30 [PMID: 23345200]
  39. J Neurol Neurosurg Psychiatry. 2017 May;88(5):386-394 [PMID: 27974394]
  40. Appl Neuropsychol Child. 2017 Jul-Sep;6(3):245-247 [PMID: 28481118]
  41. Brain Topogr. 2011 Jan;23(4):355-67 [PMID: 20623171]
  42. Hum Brain Mapp. 2019 Feb 1;40(2):608-627 [PMID: 30251765]
  43. Neuroimage. 2014 Nov 15;102 Pt 2:646-56 [PMID: 25178986]
  44. Front Psychol. 2018 Mar 27;9:401 [PMID: 29636715]
  45. Hum Brain Mapp. 2005 May;25(1):46-59 [PMID: 15846822]
  46. Neuroimage. 2012 Mar;60(1):830-46 [PMID: 22178808]
  47. Front Neurosci. 2017 Aug 18;11:462 [PMID: 28867993]
  48. Front Hum Neurosci. 2019 Jun 12;13:180 [PMID: 31244625]
  49. Neuropsychologia. 2008;46(7):2056-63 [PMID: 18336847]
  50. J Clin Neurol. 2016 Jan;12(1):57-64 [PMID: 26365021]
  51. J Clin Exp Neuropsychol. 2010 Oct;32(8):871-80 [PMID: 20383801]
  52. Neuron. 2013 Oct 30;80(3):718-28 [PMID: 24183022]
  53. J Cogn Neurosci. 2007 Jun;19(6):907-20 [PMID: 17536962]
  54. Sci Rep. 2018 Oct 4;8(1):14835 [PMID: 30287868]
  55. J Cogn Neurosci. 2009 Feb;21(2):207-21 [PMID: 18823235]

Word Cloud

Created with Highcharts 10.0.0+cognitiveTMSWMstimulationeffectstaskmaintenanceactivityprotocolsHFrTMSspatialWM-non-invasivebrainenhancementwithoutstudytranscranialmagneticdorsolateralprefrontalcortexDLPFCworkingmemorystimulirestsignificantproposedeffectivenessNIBStechniquemayenhancedcombiningconcurrentHoweverbenefitscombinationcomparisonongoingyetstudiedpresentinvestigatefMRI-guidedhigh-frequencyrepetitivelefthealthyvolunteersusingn-backverbalspantwocombinedtrainsappliedperiodsmodifiedSternbergrespectivelycomparedloadcontrol-seriousadverseappearedAmongshownoppositelydirectedinfluencesprotocolstoragemanipulationMoreoverdifferencesuggestingsimultaneousnecessarilyleadincreaseCombiningLeftConcurrentCognitiveActivityOfflineModulationWorkingMemoryHealthyVolunteers:Proof-of-ConceptStudyN-backfunctiontrainingneuromodulation

Similar Articles

Cited By