Poplar Gene Negatively Regulates Salt Tolerance by Affecting Ion and ROS Homeostasis in .

Yingying Lu, Wanlong Su, Yu Bao, Shu Wang, Fang He, Dongli Wang, Xiaoqian Yu, Weilun Yin, Chao Liu, Xinli Xia
Author Information
  1. Yingying Lu: Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  2. Wanlong Su: Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  3. Yu Bao: Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  4. Shu Wang: Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  5. Fang He: Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  6. Dongli Wang: Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  7. Xiaoqian Yu: Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  8. Weilun Yin: Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  9. Chao Liu: Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
  10. Xinli Xia: Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China. ORCID

Abstract

High concentrations of Na in saline soil impair plant growth and agricultural production. Protein tyrosine phosphorylation is crucial in many cellular regulatory mechanisms. However, regulatory mechanisms of plant protein tyrosine phosphatases (PTPs) in controlling responses to abiotic stress remain limited. We report here the identification of a Tyrosine (Tyr)-specific phosphatase, PdPTP1, from NE19 ( × ( × ). Transcript levels of were upregulated significantly by NaCl treatment and oxidative stress. PdPTP1 was found both in the nucleus and cytoplasm. Under NaCl treatment, transgenic plants overexpressing () accumulated more Na and less K. In addition, poplars accumulated more HO and O·, which is consistent with the downregulation of enzymatic ROS-scavengers activity. Furthermore, PdPTP1 interacted with PdMAPK3/6 in vivo and in vitro. In conclusion, our findings demonstrate that PdPTP1 functions as a negative regulator of salt tolerance via a mechanism of affecting Na/K and ROS homeostasis.

Keywords

References

  1. Front Physiol. 2017 Jul 18;8:509 [PMID: 28769821]
  2. Plant Biotechnol J. 2018 Aug;16(8):1514-1528 [PMID: 29406575]
  3. Annu Rev Plant Biol. 2002;53:247-73 [PMID: 12221975]
  4. FASEB J. 2000 Jan;14(1):6-16 [PMID: 10627275]
  5. New Phytol. 2010 Nov;188(3):762-73 [PMID: 20796215]
  6. Plant Cell Rep. 1992 Apr;11(3):137-41 [PMID: 24213546]
  7. Nucleic Acids Res. 1988 Nov 25;16(22):10881-90 [PMID: 2849754]
  8. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  9. Plant Physiol. 2008 Feb;146(2):351-67 [PMID: 18156295]
  10. Genomics. 1996 Oct 15;37(2):183-6 [PMID: 8921390]
  11. Genes Dev. 2001 Mar 15;15(6):699-709 [PMID: 11274055]
  12. Plant J. 2002 Mar;29(6):705-15 [PMID: 12148529]
  13. Plant Cell Environ. 2015 Sep;38(9):1794-816 [PMID: 25159181]
  14. Cell. 2016 Oct 6;167(2):313-324 [PMID: 27716505]
  15. Plant Physiol. 2002 Nov;130(3):1443-53 [PMID: 12428009]
  16. J Exp Bot. 2014 Jan;65(1):261-73 [PMID: 24253196]
  17. Protoplasma. 2005 Dec;226(3-4):137-46 [PMID: 16333572]
  18. Plant Physiol. 2001 Sep;127(1):159-72 [PMID: 11553744]
  19. Biochem Biophys Res Commun. 2011 Aug 19;412(1):150-4 [PMID: 21806969]
  20. Nat Rev Mol Cell Biol. 2006 Nov;7(11):833-46 [PMID: 17057753]
  21. Plant Cell. 2014 Jun 6;26(6):2538-2553 [PMID: 24907341]
  22. Plant Cell. 2009 Sep;21(9):2884-97 [PMID: 19789277]
  23. Plant J. 2011 Sep;67(5):895-906 [PMID: 21575092]
  24. Trends Plant Sci. 2004 Jan;9(1):49-56 [PMID: 14729219]
  25. New Phytol. 2012 Apr;194(1):91-101 [PMID: 22239166]
  26. Cold Spring Harb Protoc. 2010 Nov 01;2010(11):pdb.prot5515 [PMID: 21041388]
  27. Curr Opin Plant Biol. 2001 Oct;4(5):392-400 [PMID: 11597496]
  28. Plant Cell. 1998 May;10(5):849-57 [PMID: 9596642]
  29. Plant J. 2006 Sep;47(5):711-9 [PMID: 16889651]
  30. Trends Plant Sci. 2002 Jul;7(7):301-8 [PMID: 12119167]
  31. Nat Protoc. 2007;2(7):1565-72 [PMID: 17585298]
  32. New Phytol. 2019 Sep;223(4):1856-1872 [PMID: 30985940]
  33. Trends Plant Sci. 2002 Sep;7(9):405-10 [PMID: 12234732]
  34. Plant Cell. 2012 Jan;24(1):233-44 [PMID: 22214659]
  35. Genes Dev. 1995 Sep 1;9(17):2117-30 [PMID: 7657164]
  36. Plant Biotechnol J. 2016 Mar;14(3):849-60 [PMID: 26228739]
  37. Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:463-499 [PMID: 15012199]
  38. Plant Physiol. 2014 May;165(1):319-34 [PMID: 24676858]
  39. Annu Rev Plant Biol. 2008;59:651-81 [PMID: 18444910]
  40. Photosynth Res. 2007 Apr;92(1):103-8 [PMID: 17486428]
  41. New Phytol. 2018 Jan;217(2):523-539 [PMID: 29205383]
  42. Biochim Biophys Acta. 1975 Jan 31;376(1):105-15 [PMID: 1125215]
  43. Plant Physiol. 2003 Jul;132(3):1149-52 [PMID: 12857797]
  44. Curr Opin Cell Biol. 2009 Apr;21(2):140-6 [PMID: 19269802]
  45. Plant J. 2004 Nov;40(4):512-22 [PMID: 15500467]
  46. Plant Biotechnol J. 2019 Feb;17(2):451-460 [PMID: 30044051]
  47. Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11567-9 [PMID: 12195018]
  48. Plant Physiol. 2000 Apr;122(4):1301-10 [PMID: 10759527]
  49. Plant Cell Environ. 2010 Apr;33(4):453-67 [PMID: 19712065]
  50. Plant Physiol. 2002 Jun;129(2):908-25 [PMID: 12068129]
  51. J Integr Plant Biol. 2018 Sep;60(9):796-804 [PMID: 29905393]
  52. BMC Genomics. 2010 Jul 16;11:435 [PMID: 20637108]
  53. Curr Genomics. 2015 Aug;16(4):224-36 [PMID: 26962298]
  54. Biotechnol Adv. 2014 Jan-Feb;32(1):40-52 [PMID: 24091291]
  55. Annu Rev Plant Biol. 2003;54:63-92 [PMID: 14502985]

Grants

  1. 2016YFD0600403/National Key Research and Development Program of China
  2. 31770649/National Natural Science Foundation of China
  3. 31670610/National Natural Science Foundation of China
  4. 31570308/National Natural Science Foundation of China

MeSH Term

Amino Acid Sequence
Down-Regulation
Gene Expression Regulation, Plant
Homeostasis
Hydrogen Peroxide
Oxidative Stress
Plant Proteins
Plants, Genetically Modified
Populus
Potassium
Protein Tyrosine Phosphatases
Reactive Oxygen Species
Salt Tolerance
Sequence Alignment
Sodium
Stress, Physiological
Up-Regulation

Chemicals

Plant Proteins
Reactive Oxygen Species
Sodium
Hydrogen Peroxide
Protein Tyrosine Phosphatases
Potassium

Word Cloud

Similar Articles

Cited By