Improved solubility, dissolution rate, and oral bioavailability of main biflavonoids from extract by amorphous solid dispersion.

Bing Chen, Xuewen Wang, Yanyan Zhang, Kangping Huang, Hao Liu, Dafen Xu, Shaoguang Li, Qicai Liu, Jianyong Huang, Hong Yao, Xinhua Lin
Author Information
  1. Bing Chen: Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China.
  2. Xuewen Wang: Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.
  3. Yanyan Zhang: Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.
  4. Kangping Huang: Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.
  5. Hao Liu: Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.
  6. Dafen Xu: Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.
  7. Shaoguang Li: Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.
  8. Qicai Liu: Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China.
  9. Jianyong Huang: Department of Pharmaceutical, Fujian Medical University Union Hospital, Fuzhou, China.
  10. Hong Yao: Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Fujian Medical University, Fuzhou, China.
  11. Xinhua Lin: Nano Medical Technology Research Institute, Fujian Medical University, Fuzhou, China.

Abstract

Amentoflavone, robustaflavone, 2″,3″-dihydro-3',3‴-biapigenin, 3',3‴-binaringenin, and delicaflavone are five major hydrophobic components in the total biflavonoids extract from (TBESD) that display favorable anticancer properties. The purpose of this study was to develop a new oral delivery formulation to improve the solubilities, dissolution rates, and oral bioavailabilities of the main ingredients in TBESD by the solid dispersion technique. Solid dispersions of TBESD with various hydrophilic polymers were prepared, and different technologies were applied to select the suitable carrier and method. TBESD amorphous solid dispersion (TBESD-ASD) with polyvinylpyrrolidone K-30 was successfully prepared by the solvent evaporation method. The physicochemical properties of TBESD-ASD were investigated by scanning electron microscopy, differential scanning calorimetry, and Fourier-transform infrared spectroscopy. As a result, TBESD was found to be molecularly dispersed in the amorphous carrier. The solubilities and dissolution rates of all five ingredients in the TBESD-ASD were significantly increased (nearly 100% release), compared with raw TBESD. Meanwhile, TBESD-ASD showed good preservation stability for 3 months under accelerated conditions of 40 °C and 75% relative humidity. A subsequent pharmacokinetic study in rats revealed that and AUC of all five components were significantly increased by the solid dispersion preparation. An study clearly revealed that compared to raw TBESD, a significant reduction in tumor size and microvascular density occurred after oral administration of TBESD-ASD to xenograft-bearing tumor mice. Collectively, the developed TBESD-ASD with the improved solubility, dissolution rates and oral bio-availabilities of the main ingredients could be a promising chemotherapeutic agent for cancer treatment.

Keywords

References

  1. Int J Pharm. 2019 Mar 10;558:215-224 [PMID: 30654059]
  2. Int J Pharm. 2017 Aug 7;528(1-2):602-610 [PMID: 28642200]
  3. Int J Pharm. 2012 Feb 14;423(1):69-76 [PMID: 21571054]
  4. J Mol Med (Berl). 2017 Mar;95(3):311-322 [PMID: 27838742]
  5. Molecules. 2017 Feb 20;22(2): [PMID: 28230759]
  6. Nat Rev Drug Discov. 2014 Sep;13(9):655-72 [PMID: 25103255]
  7. Molecules. 2017 Feb 16;22(2): [PMID: 28212342]
  8. J Ethnopharmacol. 2015 Nov 4;174:410-8 [PMID: 26320685]
  9. Drug Deliv. 2008 Nov;15(8):477-84 [PMID: 18720135]
  10. Int J Pharm. 2013 Aug 30;453(1):157-66 [PMID: 23751341]
  11. Asian J Pharm Sci. 2017 Mar;12(2):124-133 [PMID: 32104321]
  12. J Pharm Biomed Anal. 2018 Feb 5;149:80-88 [PMID: 29101819]
  13. Fitoterapia. 2015 Apr;102:189-97 [PMID: 25446043]
  14. Nanomaterials (Basel). 2018 May 31;8(6): [PMID: 29857475]
  15. Planta Med. 2016 Feb;82(3):217-23 [PMID: 26576031]
  16. Drug Deliv. 2018 Nov;25(1):198-209 [PMID: 29302995]
  17. Int J Nanomedicine. 2019 Aug 20;14:6691-6706 [PMID: 31692515]
  18. J Chromatogr A. 2019 Sep 13;1601:243-254 [PMID: 31104849]
  19. J Pharm Sci. 2015 Oct;104(10):3237-58 [PMID: 26175316]
  20. Int J Nanomedicine. 2012;7:3517-26 [PMID: 22848175]
  21. Eur J Pharm Sci. 2016 Dec 1;95:161-169 [PMID: 27989856]
  22. Drug Metab Dispos. 2019 Jul;47(7):732-742 [PMID: 31043439]
  23. Adv Drug Deliv Rev. 2016 May 1;100:85-101 [PMID: 26826438]
  24. Molecules. 2017 Apr 07;22(4): [PMID: 28387736]
  25. J Control Release. 2018 Jun 10;279:114-125 [PMID: 29654798]
  26. J Pharm Sci. 2011 Sep;100(9):3793-801 [PMID: 21520087]
  27. J Ethnopharmacol. 2016 Aug 22;190:261-71 [PMID: 27292193]
  28. J Ethnopharmacol. 2011 Sep 1;137(1):662-8 [PMID: 21718776]
  29. J Ethnopharmacol. 2011 Oct 31;138(1):184-91 [PMID: 21924341]
  30. Phytochem Anal. 2014 Mar-Apr;25(2):127-33 [PMID: 24115163]
  31. Carbohydr Polym. 2016 Feb 10;137:350-359 [PMID: 26686139]
  32. Int J Pharm. 2013 Aug 30;453(1):253-84 [PMID: 22820134]
  33. Int J Nanomedicine. 2018 Dec 12;13:8537-8548 [PMID: 30587976]
  34. Planta Med. 2013 Sep;79(14):1313-8 [PMID: 23929244]
  35. J Control Release. 2018 Dec 28;292:91-110 [PMID: 30118788]
  36. Adv Drug Deliv Rev. 2001 Mar 1;46(1-3):3-26 [PMID: 11259830]
  37. J Pharm Sci. 2007 Feb;96(2):294-304 [PMID: 17051588]
  38. Pharmaceutics. 2019 Jun 08;11(6): [PMID: 31181811]
  39. Cell J. 2019 Apr;21(1):27-34 [PMID: 30507085]
  40. Eur J Pharm Biopharm. 2013 Nov;85(3 Pt B):799-813 [PMID: 24056053]
  41. J Control Release. 2018 Dec 28;292:172-182 [PMID: 30408553]
  42. Phytomedicine. 2019 Sep;62:152973 [PMID: 31177019]

MeSH Term

Administration, Oral
Animals
Area Under Curve
Biflavonoids
Biological Availability
Drug Liberation
Hydrophobic and Hydrophilic Interactions
Male
Mice
Mice, Inbred BALB C
Mice, Nude
Plant Extracts
Polymers
Povidone
Rats
Rats, Sprague-Dawley
Selaginellaceae
Solubility

Chemicals

Biflavonoids
Plant Extracts
Polymers
Povidone

Word Cloud

Created with Highcharts 10.0.0TBESDoralTBESD-ASDsoliddissolutiondispersionamorphousfivebiflavonoidsstudyratesmainingredientscomponentsextractpropertiessolubilitiesdispersionspreparedcarriermethodpolyvinylpyrrolidoneK-30scanningsignificantlyincreasedcomparedrawrevealedtumorsolubilitybioavailabilityAmentoflavonerobustaflavone2″3″-dihydro-3'3‴-biapigenin3'3‴-binaringenindelicaflavonemajorhydrophobictotaldisplayfavorableanticancerpurposedevelopnewdeliveryformulationimprovebioavailabilitiestechniqueSolidvarioushydrophilicpolymersdifferenttechnologiesappliedselectsuitablesuccessfullysolventevaporationphysicochemicalinvestigatedelectronmicroscopydifferentialcalorimetryFourier-transforminfraredspectroscopyresultfoundmolecularlydispersednearly100%releaseMeanwhileshowedgoodpreservationstability3 monthsacceleratedconditions40 °C75%relativehumiditysubsequentpharmacokineticratsAUCpreparationclearlysignificantreductionsizemicrovasculardensityoccurredadministrationxenograft-bearingmiceCollectivelydevelopedimprovedbio-availabilitiespromisingchemotherapeuticagentcancertreatmentImprovedrateSelaginelladoederleinii

Similar Articles

Cited By