Flow Cytometry Combined With Single Cell Sorting to Study Heterogeneous Germination of Spores Under High Pressure.

Yifan Zhang, Alessia I Delbrück, Cosima L Off, Stephan Benke, Alexander Mathys
Author Information
  1. Yifan Zhang: Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland.
  2. Alessia I Delbrück: Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland.
  3. Cosima L Off: Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland.
  4. Stephan Benke: Cytometry Facility, University of Zurich, Zurich, Switzerland.
  5. Alexander Mathys: Sustainable Food Processing Laboratory, Institute of Food, Nutrition and Health, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland.

Abstract

Isostatic high pressure (HP) of 150 MPa can trigger the germination of bacterial spores, making them lose their extreme resistance to stress factors, and increasing their susceptibility to milder inactivation strategies. However, germination response of spores within a population is very heterogeneous, and tools are needed to study this heterogeneity. Here, classical methods were combined with more recent and powerful techniques such as flow cytometry (FCM) and fluorescence activated cell sorting (FACS) to investigate spore germination behavior under HP. spores were treated with HP at 150 MPa and 37°C, stained with SYTO16 and PI, and analyzed via FCM. Four sub-populations were detected. These sub-populations were for the first time isolated on single cell level using FACS and characterized in terms of their heat resistance (80°C, 10 min) and cultivability in a nutrient-rich environment. The four isolated sub-populations were found to include (1) heat-resistant and mostly cultivable superdormant spores, i.e., spores that remained dormant after this specific HP treatment, (2) heat-sensitive and cultivable germinated spores, (3) heat-sensitive and partially-cultivable germinated spores, and (4) membrane-compromised cells with barely detectable cultivability. Of particular interest was the physiological state of the third sub-population, which was previously referred to as "unknown". Moreover, the kinetic transitions between different physiological states were characterized. After less than 10 min of HP treatment, the majority of spores germinated and ended up in a sublethally damaged stage. HP treatment at 150 MPa and 37°C did not cause inactivation of all geminated spores, suggesting that subsequent inactivation strategies such as mild heat inactivation or other inactivation techniques are necessary to control spores in food. This study validated FCM as a powerful technique to investigate the heterogeneous behavior of spores under HP, and provided a pipeline using FACS for isolation of different sub-populations and subsequent characterization to understand their physiological states.

Keywords

References

  1. Nat Protoc. 2011 May;6(5):625-39 [PMID: 21527920]
  2. Appl Environ Microbiol. 2008 Dec;74(24):7570-7 [PMID: 18952869]
  3. J Appl Microbiol. 2006 Sep;101(3):507-13 [PMID: 16907801]
  4. Food Microbiol. 2011 Apr;28(2):199-208 [PMID: 21315974]
  5. J Food Prot. 1979 Apr;42(4):346-355 [PMID: 30812186]
  6. Front Microbiol. 2018 Nov 23;9:2720 [PMID: 30532740]
  7. Appl Environ Microbiol. 2015 Apr;81(8):2927-38 [PMID: 25681191]
  8. Front Microbiol. 2018 Nov 20;9:2773 [PMID: 30515140]
  9. Int J Food Microbiol. 2014 May 2;177:57-62 [PMID: 24607860]
  10. BMC Microbiol. 2015 Feb 18;15:36 [PMID: 25881030]
  11. Appl Environ Microbiol. 2004 Dec;70(12):7321-8 [PMID: 15574932]
  12. Anal Chem. 2010 Oct 15;82(20):8717-24 [PMID: 20873796]
  13. Appl Environ Microbiol. 2014 Jan;80(1):345-53 [PMID: 24162576]
  14. J Microbiol Methods. 2000 Sep;42(1):97-114 [PMID: 11000436]
  15. PLoS One. 2013;8(3):e58972 [PMID: 23536843]
  16. Am J Physiol Lung Cell Mol Physiol. 2010 Feb;298(2):L127-30 [PMID: 19915158]
  17. J Bacteriol. 1969 Jun;98(3):1011-20 [PMID: 4977979]
  18. Appl Environ Microbiol. 2005 Oct;71(10):5879-87 [PMID: 16204500]
  19. PLoS One. 2019 Jul 29;14(7):e0219892 [PMID: 31356641]
  20. J Appl Microbiol. 2007 Jan;102(1):65-76 [PMID: 17184321]
  21. Trends Microbiol. 2013 Jun;21(6):296-304 [PMID: 23540831]
  22. Annu Rev Food Sci Technol. 2016;7:457-82 [PMID: 26934174]
  23. Science. 1955 Mar 11;121(3141):345-9 [PMID: 13237991]
  24. J Appl Microbiol. 2014 Sep;117(3):711-20 [PMID: 24891141]
  25. J Appl Microbiol. 2012 Mar;112(3):526-36 [PMID: 22212253]
  26. Anal Chem. 2006 Oct 1;78(19):6936-41 [PMID: 17007517]
  27. Appl Environ Microbiol. 1998 Sep;64(9):3220-4 [PMID: 9726863]
  28. Curr Opin Microbiol. 2003 Dec;6(6):550-6 [PMID: 14662349]
  29. Front Microbiol. 2015 Jul 14;6:712 [PMID: 26236296]
  30. Annu Rev Microbiol. 2017 Sep 8;71:459-477 [PMID: 28697670]
  31. Appl Environ Microbiol. 2002 Jun;68(6):3172-5 [PMID: 12039788]
  32. J Bacteriol. 2014 Apr;196(7):1297-305 [PMID: 24488313]
  33. J Bacteriol. 1996 Jun;178(12):3486-95 [PMID: 8655545]
  34. J Appl Microbiol. 2006 Sep;101(3):514-25 [PMID: 16907802]
  35. Food Microbiol. 2014 Aug;41:8-18 [PMID: 24750808]
  36. Appl Environ Microbiol. 2006 May;72(5):3476-81 [PMID: 16672493]
  37. Trends Microbiol. 2007 Apr;15(4):172-80 [PMID: 17336071]
  38. Int J Food Microbiol. 1995 Dec;28(2):317-26 [PMID: 8750676]
  39. J Food Prot. 2004 May;67(5):934-8 [PMID: 15151230]
  40. J Food Sci. 2011 Apr;76(3):M189-97 [PMID: 21535843]
  41. J Bacteriol. 2000 Oct;182(19):5556-62 [PMID: 10986261]
  42. Compr Rev Food Sci Food Saf. 2018 May;17(3):646-662 [PMID: 33350130]
  43. J Food Prot. 2011 Dec;74(12):2079-89 [PMID: 22186048]
  44. Front Microbiol. 2019 Jan 04;9:3163 [PMID: 30662433]
  45. Cytometry A. 2006 Jun;69(6):541-51 [PMID: 16604519]
  46. Biomed Res Int. 2014;2014:461941 [PMID: 25276788]
  47. Front Nutr. 2014 Aug 19;1:15 [PMID: 25988118]
  48. J Appl Bacteriol. 1970 Mar;33(1):34-49 [PMID: 4246071]
  49. Front Microbiol. 2016 Aug 03;7:1132 [PMID: 27536270]
  50. Annu Rev Food Sci Technol. 2020 Mar 25;11:255-274 [PMID: 31905011]
  51. J Gen Microbiol. 1970 Mar;60(3):335-46 [PMID: 5487618]
  52. J Bacteriol. 2009 Mar;191(6):1787-97 [PMID: 19136594]
  53. Appl Environ Microbiol. 2017 Jun 30;83(14): [PMID: 28476768]

Word Cloud

Created with Highcharts 10.0.0sporesHPinactivationgerminationsub-populations150MPaheterogeneousFCMcellFACStreatmentgerminatedphysiologicalhighpressurebacterialresistancestrategiesstudypowerfultechniquesflowcytometrysortinginvestigatesporebehavior37°Cisolatedusingcharacterizedheat10mincultivabilitycultivableheat-sensitivedifferentstatessubsequentIsostaticcantriggermakingloseextremestressfactorsincreasingsusceptibilitymilderHoweverresponsewithinpopulationtoolsneededheterogeneityclassicalmethodscombinedrecentfluorescenceactivatedtreatedstainedSYTO16PIanalyzedviaFourdetectedfirsttimesinglelevelterms80°Cnutrient-richenvironmentfourfoundinclude1heat-resistantmostlysuperdormantieremaineddormantspecific23partially-cultivable4membrane-compromisedcellsbarelydetectableparticularintereststatethirdsub-populationpreviouslyreferred"unknown"MoreoverkinetictransitionslessmajorityendedsublethallydamagedstagecausegeminatedsuggestingmildnecessarycontrolfoodvalidatedtechniqueprovidedpipelineisolationcharacterizationunderstandFlowCytometryCombinedSingleCellSortingStudyHeterogeneousGerminationSporesHighPressureBacillusfluorescence-activated

Similar Articles

Cited By