Dynamic spatiotemporal patterns of brain connectivity reorganize across development.
Jakub Vohryzek, Alessandra Griffa, Emeline Mullier, Cecilia Friedrichs-Maeder, Corrado Sandini, Marie Schaer, Stephan Eliez, Patric Hagmann
Author Information
Jakub Vohryzek: Department of Radiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland. ORCID
Alessandra Griffa: Department of Radiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland.
Emeline Mullier: Department of Radiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland.
Cecilia Friedrichs-Maeder: Department of Radiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland.
Corrado Sandini: Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland.
Marie Schaer: Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland.
Stephan Eliez: Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland.
Patric Hagmann: Department of Radiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland.
中文译文
English
Late human development is characterized by the maturation of high-level functional processes, which rely on reshaping of white matter connections, as well as synaptic density. However, the relationship between the whole-brain dynamics and the underlying white matter networks in neurodevelopment is largely unknown. In this study, we focused on how the structural connectome shapes the emerging dynamics of cerebral development between the ages of 6 and 33 years, using functional and diffusion magnetic resonance imaging combined into a spatiotemporal connectivity framework. We defined two new measures of brain dynamics, namely the system diversity and the spatiotemporal diversity, which quantify the level of integration/segregation between functional systems and the level of temporal self-similarity of the functional patterns of brain dynamics, respectively. We observed a global increase in system diversity and a global decrease and local refinement in spatiotemporal diversity values with age. In support of these findings, we further found an increase in the usage of long-range and inter-system white matter connectivity and a decrease in the usage of short-range connectivity with age. These findings suggest that dynamic functional patterns in the brain progressively become more integrative and temporally self-similar with age. These functional changes are supported by a greater involvement of long-range and inter-system axonal pathways.
Neuroimage. 2008 Jul 15;41(4):1267-77
[PMID: 18495497 ]
J Neurosci. 2015 Apr 8;35(14):5579-88
[PMID: 25855174 ]
PLoS Biol. 2009 Jul;7(7):e1000157
[PMID: 19621066 ]
Neurology. 2014 Jul 15;83(3):247-52
[PMID: 24928121 ]
Nat Rev Neurosci. 2009 Mar;10(3):186-98
[PMID: 19190637 ]
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13848-53
[PMID: 16945915 ]
Neuroimage. 2009 Oct 15;48(1):63-72
[PMID: 19573611 ]
Neuroscientist. 2013 Dec;19(6):616-28
[PMID: 24047610 ]
Brain Imaging Behav. 2015 Dec;9(4):765-75
[PMID: 25376332 ]
Neuroimage. 2013 Jun;73:239-54
[PMID: 22846632 ]
Trends Cogn Sci. 2013 Dec;17(12):627-40
[PMID: 24183779 ]
PLoS One. 2012;7(12):e48121
[PMID: 23272041 ]
Magn Reson Med. 2005 Dec;54(6):1377-86
[PMID: 16247738 ]
Front Neurosci. 2016 Aug 23;10:381
[PMID: 27601975 ]
Neuron. 2010 Sep 9;67(5):728-34
[PMID: 20826305 ]
Proc Natl Acad Sci U S A. 2012 Apr 10;109(15):5868-73
[PMID: 22467830 ]
Hum Brain Mapp. 2009 Aug;30(8):2356-66
[PMID: 19172655 ]
Neuroimage. 2016 Nov 15;142:14-26
[PMID: 25944610 ]
Neuroimage. 2014 Nov 15;102 Pt 2:345-57
[PMID: 25109530 ]
Trends Cogn Sci. 2011 Oct;15(10):483-506
[PMID: 21908230 ]
Science. 2010 Sep 10;329(5997):1358-61
[PMID: 20829489 ]
PLoS Comput Biol. 2013;9(9):e1003171
[PMID: 24086116 ]
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19067-72
[PMID: 20956328 ]
Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13681-6
[PMID: 26483477 ]
Neuroimage. 2013 Feb 1;66:543-52
[PMID: 23041334 ]
Proc Natl Acad Sci U S A. 2014 Nov 18;111(46):16574-9
[PMID: 25368179 ]
PLoS Biol. 2008 Jul 1;6(7):e159
[PMID: 18597554 ]
Front Syst Neurosci. 2012 Jun 13;6:43
[PMID: 22707934 ]
PLoS Comput Biol. 2016 Dec 13;12(12):e1005138
[PMID: 27959921 ]
PLoS Biol. 2016 Jun 07;14(6):e1002469
[PMID: 27270215 ]
Brain Cogn. 2010 Feb;72(1):101-13
[PMID: 19765880 ]
Neuroimage. 2012 Aug 15;62(2):782-90
[PMID: 21979382 ]
Proc Natl Acad Sci U S A. 2001 Jan 16;98(2):676-82
[PMID: 11209064 ]
Nat Hum Behav. 2019 Aug;3(8):768-771
[PMID: 31253883 ]
Netw Neurosci. 2017 Feb 01;1(1):14-30
[PMID: 30793068 ]
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):12574-12579
[PMID: 27791099 ]
Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8
[PMID: 15976020 ]
Neuroimage. 2014 Jan 1;84:320-41
[PMID: 23994314 ]
Cortex. 2008 Sep;44(8):936-52
[PMID: 18635164 ]
Annu Rev Neurosci. 2015 Jul 8;38:433-47
[PMID: 25938726 ]
Neuroimage. 2010 Sep;52(3):1059-69
[PMID: 19819337 ]
Neuroimage. 2015 Jan 15;105:536-51
[PMID: 25462692 ]
Cereb Cortex. 2013 Oct;23(10):2380-93
[PMID: 22875861 ]
PLoS Biol. 2015 Dec 29;13(12):e1002328
[PMID: 26713863 ]
Neuron. 2014 Sep 17;83(6):1335-53
[PMID: 25233316 ]
Front Hum Neurosci. 2014 Feb 03;8:20
[PMID: 24550805 ]
Neuroimage. 2002 Oct;17(2):825-41
[PMID: 12377157 ]
Front Physiol. 2012 Feb 08;3:15
[PMID: 22347863 ]
Hum Brain Mapp. 2014 May;35(5):1981-96
[PMID: 23861343 ]
J Neurosci. 2015 Apr 29;35(17):6849-59
[PMID: 25926460 ]
Neuroimage. 2017 Jul 15;155:490-502
[PMID: 28412440 ]
Hum Brain Mapp. 2017 Jan;38(1):97-108
[PMID: 27534733 ]
Sci Bull (Beijing). 2018 Dec 30;63(24):1606-1607
[PMID: 36658850 ]
Neurosci Biobehav Rev. 2014 Sep;45:100-18
[PMID: 24875392 ]
Front Neurosci. 2016 Jun 06;10:247
[PMID: 27375412 ]
Neuroimage. 2017 Oct 15;160:15-31
[PMID: 28161313 ]
Neuroimage. 2012 Mar;60(1):623-32
[PMID: 22233733 ]
J Neurosci Methods. 2012 Jan 30;203(2):386-97
[PMID: 22001222 ]
Neuroimage. 2012 Feb 1;59(3):2142-54
[PMID: 22019881 ]
J Child Psychol Psychiatry. 2015 Mar;56(3):299-320
[PMID: 25441756 ]
Front Neurosci. 2019 Feb 20;13:117
[PMID: 30842722 ]
Dev Cogn Neurosci. 2016 Apr;18:70-77
[PMID: 26375924 ]
Cereb Cortex. 2014 Mar;24(3):663-76
[PMID: 23146964 ]
Nat Commun. 2015 Jul 16;6:7751
[PMID: 26178017 ]
Sci Data. 2014 Dec 09;1:140049
[PMID: 25977800 ]
J Neurophysiol. 2011 Sep;106(3):1125-65
[PMID: 21653723 ]
Neuroimage. 2013 Apr 15;70:402-9
[PMID: 23296185 ]
PLoS One. 2015 Dec 29;10(12):e0144963
[PMID: 26714192 ]
Neuropsychopharmacology. 2010 Jan;35(1):147-68
[PMID: 19794405 ]