Effect of the TetR family transcriptional regulator Sp1418 on the global metabolic network of Saccharopolyspora pogona.

Haocheng He, Shuangqin Yuan, Jinjuan Hu, Jianming Chen, Jie Rang, Jianli Tang, Zhudong Liu, Ziyuan Xia, Xuezhi Ding, Shengbiao Hu, Liqiu Xia
Author Information
  1. Haocheng He: Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
  2. Shuangqin Yuan: Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
  3. Jinjuan Hu: Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
  4. Jianming Chen: Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
  5. Jie Rang: Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
  6. Jianli Tang: Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
  7. Zhudong Liu: Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
  8. Ziyuan Xia: Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
  9. Xuezhi Ding: Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
  10. Shengbiao Hu: Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
  11. Liqiu Xia: Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China. xialq@hunnu.edu.cn. ORCID

Abstract

BACKGROUND: Saccharopolyspora pogona is a prominent industrial strain due to its production of butenyl-spinosyn, a high-quality insecticide against a broad spectrum of insect pests. TetR family proteins are diverse in a tremendous number of microorganisms and some are been researched to have a key role in metabolic regulation. However, specific functions of TetR family proteins in S. pogona are yet to characterize.
RESULTS: In the present study, the overexpression of the tetR-like gene sp1418 in S. pogona resulted in marked effects on vegetative growth, sporulation, butenyl-spinosyn biosynthesis, and oxidative stress. By using qRT-PCR analysis, mass spectrometry, enzyme activity detection, and sp1418 knockout verification, we showed that most of these effects could be attributed to the overexpression of Sp1418, which modulated enzymes related to the primary metabolism, oxidative stress and secondary metabolism, and thereby resulted in distinct growth characteristics and an unbalanced supply of precursor monomers for butenyl-spinosyn biosynthesis.
CONCLUSION: This study revealed the function of Sp1418 and enhanced the understanding of the metabolic network in S. pogona, and provided insights into the improvement of secondary metabolite production.

Keywords

References

  1. Microbiol Mol Biol Rev. 2013 Sep;77(3):440-75 [PMID: 24006471]
  2. FEMS Microbiol Lett. 2016 Sep;363(18): [PMID: 27549303]
  3. J Nat Prod. 2016 Mar 25;79(3):629-61 [PMID: 26852623]
  4. Appl Microbiol Biotechnol. 2017 Feb;101(4):1547-1557 [PMID: 27830292]
  5. Org Biomol Chem. 2009 May 7;7(9):1753-60 [PMID: 19590766]
  6. Appl Microbiol Biotechnol. 2015 Mar;99(6):2683-92 [PMID: 25549616]
  7. Biotechnol Lett. 2008 Sep;30(9):1621-6 [PMID: 18421418]
  8. Microbiologyopen. 2015 Dec;4(6):896-916 [PMID: 26434659]
  9. Appl Microbiol Biotechnol. 2015 Oct;99(20):8629-41 [PMID: 26266753]
  10. Mol Microbiol. 2016 Jan;99(2):338-59 [PMID: 26418273]
  11. Mol Microbiol. 2010 Oct;78(2):361-79 [PMID: 20979333]
  12. Biotechnol J. 2019 Jan;14(1):e1700769 [PMID: 29897659]
  13. Front Microbiol. 2017 Nov 29;8:2371 [PMID: 29238338]
  14. FEMS Microbiol Lett. 2003 Aug 8;225(1):35-40 [PMID: 12900018]
  15. Synth Syst Biotechnol. 2018 Nov 02;3(4):261-267 [PMID: 30417142]
  16. Nucleic Acids Res. 2017 Apr 20;45(7):4244-4254 [PMID: 28160603]
  17. Free Radic Biol Med. 2008 Oct 15;45(8):1167-77 [PMID: 18708137]
  18. Bioorg Med Chem. 2009 Jun 15;17(12):4185-96 [PMID: 19324553]
  19. Microb Cell Fact. 2019 Oct 26;18(1):182 [PMID: 31655587]
  20. Curr Opin Clin Nutr Metab Care. 2011 Jan;14(1):41-8 [PMID: 21102319]
  21. J Ind Microbiol Biotechnol. 2006 Feb;33(2):94-104 [PMID: 16179985]
  22. Microbiol Mol Biol Rev. 2005 Jun;69(2):326-56 [PMID: 15944459]
  23. Antonie Van Leeuwenhoek. 2008 Jun;94(1):85-97 [PMID: 18273689]
  24. Mol Microbiol. 1995 Jul;17(1):37-48 [PMID: 7476207]
  25. ACS Synth Biol. 2017 Jun 16;6(6):995-1005 [PMID: 28264562]
  26. ACS Synth Biol. 2019 Jan 18;8(1):137-147 [PMID: 30590919]
  27. Mol Cells. 2014 Oct 31;37(10):727-33 [PMID: 25256218]
  28. Metab Eng. 2017 Jan;39:228-236 [PMID: 28013086]
  29. Appl Microbiol Biotechnol. 2018 May;102(9):4101-4115 [PMID: 29549449]
  30. J Basic Microbiol. 2018 Sep;58(9):739-746 [PMID: 29963725]
  31. Microb Cell Fact. 2014 Feb 21;13(1):27 [PMID: 24555503]
  32. J Bacteriol. 2000 Mar;182(5):1286-95 [PMID: 10671449]
  33. Metab Eng. 2018 Jul;48:254-268 [PMID: 29944936]
  34. EMBO J. 2002 Dec 16;21(24):6944-53 [PMID: 12486015]
  35. Gene. 2001 May 30;270(1-2):245-52 [PMID: 11404022]
  36. mBio. 2016 Apr 19;7(2):e00523-16 [PMID: 27094333]
  37. J Antibiot (Tokyo). 2010 Mar;63(3):101-11 [PMID: 20150928]
  38. Free Radic Biol Med. 2011 May 1;50(9):1186-95 [PMID: 21295136]
  39. J Mol Microbiol Biotechnol. 2017;27(3):190-198 [PMID: 28848197]
  40. Nat Rev Microbiol. 2013 Jul;11(7):443-54 [PMID: 23712352]
  41. Appl Microbiol Biotechnol. 2018 Sep;102(18):8011-8021 [PMID: 29984395]
  42. J Clin Invest. 2008 Jul;118(7):2516-25 [PMID: 18521188]
  43. Nucleic Acids Res. 2013 Jan;41(Database issue):D1130-6 [PMID: 23193280]
  44. Gene. 1992 Jul 1;116(1):43-9 [PMID: 1628843]
  45. J Bacteriol. 2000 Oct;182(20):5653-62 [PMID: 11004161]

Grants

  1. 31770106/the National Natural Science Foundation of China
  2. 2012CB722301/National Basic Research Program of China (973 Program)
  3. 20134486/the Cooperative Innovation Center of Engineering and New Products for Developmental Biology of Hunan Province

MeSH Term

Bacterial Proteins
Gene Expression Regulation, Bacterial
Genetic Engineering
Metabolic Networks and Pathways
Saccharopolyspora

Chemicals

Bacterial Proteins

Word Cloud

Created with Highcharts 10.0.0pogonaTetRfamilySaccharopolysporabutenyl-spinosynmetabolicSstressSp1418productionproteinsstudyoverexpressionsp1418resultedeffectsgrowthbiosynthesisoxidativemetabolismsecondarynetworktranscriptionalregulatorBACKGROUND:prominentindustrialstrainduehigh-qualityinsecticidebroadspectruminsectpestsdiversetremendousnumbermicroorganismsresearchedkeyroleregulationHoweverspecificfunctionsyetcharacterizeRESULTS:presenttetR-likegenemarkedvegetativesporulationusingqRT-PCRanalysismassspectrometryenzymeactivitydetectionknockoutverificationshowedattributedmodulatedenzymesrelatedprimarytherebydistinctcharacteristicsunbalancedsupplyprecursormonomersCONCLUSION:revealedfunctionenhancedunderstandingprovidedinsightsimprovementmetaboliteEffectglobalButenyl-spinosynOxidative

Similar Articles

Cited By