A novel vibriophage exhibits inhibitory activity against host protein synthesis machinery.

Khrongkhwan Thammatinna, MacKennon E Egan, Htut Htut Htoo, Kanika Khanna, Joseph Sugie, Jason F Nideffer, Elizabeth Villa, Anchalee Tassanakajon, Joe Pogliano, Poochit Nonejuie, Vorrapon Chaikeeratisak
Author Information
  1. Khrongkhwan Thammatinna: Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
  2. MacKennon E Egan: Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA.
  3. Htut Htut Htoo: Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand. ORCID
  4. Kanika Khanna: Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA.
  5. Joseph Sugie: Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA.
  6. Jason F Nideffer: Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA.
  7. Elizabeth Villa: Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA. ORCID
  8. Anchalee Tassanakajon: Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
  9. Joe Pogliano: Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA.
  10. Poochit Nonejuie: Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand.
  11. Vorrapon Chaikeeratisak: Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. vorrapon.c@chula.ac.th. ORCID

Abstract

Since the emergence of deadly pathogens and multidrug-resistant bacteria at an alarmingly increased rate, bacteriophages have been developed as a controlling bioagent to prevent the spread of pathogenic bacteria. One of these pathogens, disease-causing Vibrio parahaemolyticus (VP) which induces acute hepatopancreatic necrosis, is considered one of the deadliest shrimp pathogens, and has recently become resistant to various classes of antibiotics. Here, we discovered a novel vibriophage that specifically targets the vibrio host, VP. The vibriophage, designated Seahorse, was classified in the family Siphoviridae because of its icosahedral capsid surrounded by head fibers and a non-contractile long tail. Phage Seahorse was able to infect the host in a broad range of pH and temperatures, and it had a relatively short latent period (nearly 30 minutes) in which it produced progeny at 72 particles per cell at the end of its lytic cycle. Upon phage infection, the host nucleoid condensed and became toroidal, similar to the bacterial DNA morphology seen during tetracycline treatment, suggesting that phage Seahorse hijacked host biosynthesis pathways through protein translation. As phage Seahorse genome encodes 48 open reading frames with many hypothetical proteins, this genome could be a potential untapped resource for the discovery of phage-derived therapeutic proteins.

References

  1. Sawabe, T. et al. Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front. Microbiol. 4, 414 (2013). [PMID: 24409173]
  2. Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. 113, E5062 (2016). [PMID: 27503882]
  3. Froelich, B., Gonzalez, R., Blackwood, D., Lauer, K. & Noble, R. Decadal monitoring reveals an increase in Vibrio spp. concentrations in the Neuse River Estuary, North Carolina, USA. Plos One 14, e0215254 (2019). [PMID: 31013284]
  4. Siboni, N., Balaraju, V., Carney, R., Labbate, M. & Seymour, J. R. Spatiotemporal Dynamics of Vibrio spp. within the Sydney Harbour Estuary. Front. Microbiol. 7, 460 (2016). [PMID: 27148171]
  5. Su, Y. C. & Liu, C. Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiol. 24, 549–558 (2007). [PMID: 17418305]
  6. Iwamoto, M., Ayers, T., Mahon, B. E. & Swerdlow, D. L. Epidemiology of seafood-associated infections in the United States. Clin. Microbiol. Rev. 23, 399–411 (2010). [PMID: 20375359]
  7. Velazquez-Roman, J., León-Sicairos, N., Hernandez-Diaz, L. & Canizalez-Roman, A. Pandemic Vibrio parahaemolyticus O3:K6 on the American continent. Front. Cell. Infect. Microbiol. 3, 110 (2014). [PMID: 24427744]
  8. Ghenem, L., Elhadi, N., Alzahrani, F. & Nishibuchi, M. Vibrio Parahaemolyticus: A Review on Distribution, Pathogenesis, Virulence Determinants and Epidemiology. Saudi J. Med. Med. Sci. 5, 93–103 (2017). [PMID: 30787765]
  9. Lee, C. T. et al. The opportunistic marine pathogen Vibrio parahaemolyticus becomes virulent by acquiring a plasmid that expresses a deadly toxin. Proc. Natl. Acad. Sci. 112, 10798 (2015). [PMID: 26261348]
  10. Restrepo, L. et al. PirVP genes causing AHPND identified in a new Vibrio species (Vibrio punensis) within the commensal Orientalis clade. Sci. Rep. 8, 13080 (2018). [PMID: 30166588]
  11. Thitamadee, S. et al. Review of current disease threats for cultivated penaeid shrimp in Asia. Aquaculture 452, 69–87 (2016). [DOI: 10.1016/j.aquaculture.2015.10.028]
  12. Soto-Rodriguez, S. A., Gomez-Gil, B., Lozano-Olvera, R., Betancourt-Lozano, M. & Morales-Covarrubias, M. S. Field and Experimental Evidence of Vibrio parahaemolyticus as the Causative Agent of Acute Hepatopancreatic Necrosis Disease of Cultured Shrimp Litopenaeus vannamei in Northwestern Mexico. Appl. Environ. Microbiol. 81, 1689 (2015). [PMID: 25548045]
  13. Restrepo, L., Bayot, B., Betancourt, I. & Pinzón, A. Draft genome sequence of pathogenic bacteria Vibrio parahaemolyticus strain Ba94C2, associated with acute hepatopancreatic necrosis disease isolate from South America. Genomics. Data 9, 143–144 (2016).
  14. Lai, H. C. et al. Pathogenesis of acute hepatopancreatic necrosis disease (AHPND) in shrimp. Fish Shellfish Immunol. 47, 1006–1014 (2015). [PMID: 26549178]
  15. Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010). [PMID: 20805405]
  16. Elmahdi, S., DaSilva, L. V. & Parveen, S. Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: A review. Food Microbiol. 57, 128–134 (2016). [PMID: 27052711]
  17. Yano, Y. et al. Prevalence and antimicrobial susceptibility of Vibrio species related to food safety isolated from shrimp cultured at inland ponds in Thailand. Food Control 38, 30–36 (2014). [DOI: 10.1016/j.foodcont.2013.09.019]
  18. Emmanuel, E. O. & Etinosa, O. I. Multi-drug resistant Vibrio species isolated from abattoir effluents in Nigeria. J. Infect. Dev. Ctries. 11, (2017).
  19. Tan, C. W. et al. Prevalence and Antimicrobial Susceptibility of Vibrio parahaemolyticus Isolated from Short Mackerels (Rastrelliger brachysoma) in Malaysia. Front. Microbiol. 8, 1087–1087 (2017). [PMID: 28659901]
  20. Odeyemi, O. A. & Ahmad, A. Population dynamics, antibiotics resistance and biofilm formation of Aeromonas and Vibrio species isolated from aquatic sources in Northern Malaysia. Microb. Pathog. 103, 178–185 (2017). [PMID: 28062284]
  21. Kongrueng, J. et al. Characterization of Vibrio parahaemolyticus causing acute hepatopancreatic necrosis disease in southern Thailand. J. Fish Dis. 38, 957–966 (2015). [PMID: 25287127]
  22. Han, J. E., Mohney, L. L., Tang, K. F. J., Pantoja, C. R. & Lightner, D. V. Plasmid mediated tetracycline resistance of Vibrio parahaemolyticus associated with acute hepatopancreatic necrosis disease (AHPND) in shrimps. Aquac. Rep. 2, 17–21 (2015). [DOI: 10.1016/j.aqrep.2015.04.003]
  23. Sulakvelidze, A., Alavidze, Z. & Morris, J. G. Bacteriophage Therapy. Antimicrob. Agents Chemother. 45, 649 (2001). [PMID: 11181338]
  24. Doss, J., Culbertson, K., Hahn, D., Camacho, J. & Barekzi, N. A Review of Phage Therapy against Bacterial Pathogens of Aquatic and Terrestrial Organisms. Viruses 9, 50 (2017). [>PMCID: ]
  25. Kalatzis, G. P., Castillo, D., Katharios, P. & Middelboe, M. Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy. Antibiotics 7, (2018).
  26. Angulo, C., Loera-Muro, A., Trujillo, E. & Luna-González, A. Control of AHPND by phages: a promising biotechnological approach. Rev. Aquac. 1–16 (2018).
  27. Mateus, L. et al. Efficiency of phage cocktails in the inactivation of Vibrio in aquaculture. Aquaculture 424–425, 167–173 (2014). [DOI: 10.1016/j.aquaculture.2014.01.001]
  28. Jun, J. W. et al. Bacteriophage Therapy of a Vibrio parahaemolyticus Infection Caused by a Multiple-Antibiotic–Resistant O3:K6 Pandemic Clinical Strain. J. Infect. Dis. 210, 72–78 (2014). [PMID: 24558119]
  29. Jun, J. W. et al. Potential application of bacteriophage pVp-1: Agent combating Vibrio parahaemolyticus strains associated with acute hepatopancreatic necrosis disease (AHPND) in shrimp. Aquaculture 457, 100–103 (2016). [DOI: 10.1016/j.aquaculture.2016.02.018]
  30. Jun, J. W. et al. Phage Application for the Protection from Acute Hepatopancreatic Necrosis Disease (AHPND) in Penaeus vannamei. Indian J. Microbiol. 58, 114–117 (2018). [PMID: 29434406]
  31. Nonejuie, P., Burkart, M., Pogliano, K. & Pogliano, J. Bacterial cytological profiling rapidly identifies the cellular pathways targeted by antibacterial molecules. Proc. Natl. Acad. Sci. 110, 16169 (2013). [PMID: 24046367]
  32. Xiang, Y. & Rossmann, M. G. Structure of bacteriophage ϕ29 head fibers has a supercoiled triple repeating helix-turn-helix motif. Proc. Natl. Acad. Sci. 108, 4806 (2011). [PMID: 21383126]
  33. van Raaij, M. J., Mitraki, A., Lavigne, G. & Cusack, S. A triple β-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401, 935–938 (1999). [PMID: 10553913]
  34. Cheng, L. et al. Cryo-EM structures of two bovine adenovirus type 3 intermediates. Virology 450–451, 174–181 (2014). [PMID: 24503080]
  35. Liu, H. et al. Atomic Structure of Human Adenovirus by Cryo-EM Reveals Interactions Among Protein Networks. Science 329, 1038 (2010). [PMID: 20798312]
  36. Kihara, A., Akiyama, Y. & Ito, K. Host regulation of lysogenic decision in bacteriophage lambda: transmembrane modulation of FtsH (HflB), the cII degrading protease, by HflKC (HflA). Proc. Natl. Acad. Sci. USA 94, 5544–5549 (1997). [PMID: 9159109]
  37. Noble, J. A. et al. The Escherichia coli hflA locus encodes a putative GTP-binding protein and two membrane proteins, one of which contains a protease-like domain. Proc. Natl. Acad. Sci. USA 90, 10866–10870 (1993). [PMID: 8248183]
  38. Dyson, Z. A. et al. Locating and Activating Molecular ‘Time Bombs’: Induction of Mycolata Prophages. Plos One 11, e0159957 (2016). [PMID: 27487243]
  39. Borysowski, J., Weber-Dąbrowska, B. & Górski, A. Bacteriophage Endolysins as a Novel Class of Antibacterial Agents. Exp. Biol. Med. 231, 366–377 (2006). [DOI: 10.1177/153537020623100402]
  40. Kraemer, J. A. et al. A Phage Tubulin Assembles Dynamic Filaments by an Atypical Mechanism to Center Viral DNA within the Host Cell. Cell 149, 1488–1499 (2012). [PMID: 22726436]
  41. Parmar, K. M., Gaikwad, S. L., Dhakephalkar, P. K., Kothari, R. & Singh, R. P. Intriguing Interaction of Bacteriophage-Host Association: An Understanding in the Era of Omics. Front. Microbiol. 8, 559–559 (2017). [PMID: 28439260]
  42. Htoo, H. H. et al. Bacterial Cytological Profiling as a Tool To Study Mechanisms of Action of Antibiotics That Are Active against Acinetobacter baumannii. Antimicrob. Agents Chemother. 63, e02310–18 (2019). [PMID: 30745382]
  43. Nonejuie, P. et al. Application of bacterial cytological profiling to crude natural product extracts reveals the antibacterial arsenal of Bacillus subtilis. J. Antibiot. 69, 353–361 (2016). [PMID: 26648120]
  44. Boonyawiwat, V. et al. Impact of farm management on expression of early mortality syndrome/acute hepatopancreatic necrosis disease (EMS/AHPND) on penaeid shrimp farms in Thailand. J. Fish Dis. 40, 649–659 (2017). [PMID: 27594170]
  45. De Schryver, P., Defoirdt, T. & Sorgeloos, P. Early mortality syndrome outbreaks: a microbial management issue in shrimp farming? Plos Pathog. 10, e1003919–e1003919 (2014). [PMID: 24763380]
  46. Li, F. et al. Genomic and biological characterization of the Vibrio alginolyticus-infecting “Podoviridae” bacteriophage, vB_ValP_IME271. Virus Genes 55, 218–226 (2019). [PMID: 30627984]
  47. Luo, P. et al. Complete genomic sequence of the Vibrio alginolyticus bacteriophage Vp670 and characterization of the lysis-related genes, cwlQ and holA. BMC Genomics 19, 741 (2018). [PMID: 30305030]
  48. Lin, Y. R., Chiu, C. W., Chang, F. Y. & Lin, C. S. Characterization of a new phage, termed ϕA318, which is specific for Vibrio alginolyticus. Arch. Virol. 157, 917–926 (2012). [PMID: 22327389]
  49. Kim, S. G. et al. Isolation and characterisation of pVa-21, a giant bacteriophage with anti-biofilm potential against Vibrio alginolyticus. Sci. Rep. 9, 6284 (2019). [PMID: 31000791]
  50. Katharios, P., Kalatzis, P. G., Kokkari, C., Sarropoulou, E. & Middelboe, M. Isolation and characterization of a N4-like lytic bacteriophage infecting Vibrio splendidus, a pathogen of fish and bivalves. Plos One 12, e0190083 (2017). [PMID: 29284014]
  51. Li, Y. et al. Complete Genomic Sequence of Bacteriophage H188: A Novel Vibrio kanaloae Phage Isolated from Yellow Sea. Curr. Microbiol. 72, 628–633 (2016). [PMID: 26858130]
  52. Jacquemot, L. et al. Therapeutic Potential of a New Jumbo Phage That Infects Vibrio coralliilyticus, a Widespread Coral Pathogen. Front. Microbiol. 9, 2501 (2018). [PMID: 30405564]
  53. Lal, T. M., Sano, M. & Ransangan, J. Genome characterization of a novel vibriophage VpKK5 (Siphoviridae) specific to fish pathogenic strain of Vibrio parahaemolyticus. J. Basic Microbiol. 56, 872–888 (2016). [PMID: 26960780]
  54. Lal, T. M., Sano, M. & Ransangan, J. Isolation and Characterization of Large Marine Bacteriophage (Myoviridae), VhKM4 Infecting Vibrio harveyi. J. Aquat. Anim. Health 29, 26–30 (2017). [PMID: 28166465]
  55. Stalin, N. & Srinivasan, P. Characterization of Vibrio parahaemolyticus and its specific phage from shrimp pond in Palk Strait, South East coast of India. Biologicals 44, 526–533 (2016). [PMID: 27697363]
  56. Matamp, N. & Bhat, S. G. Genome characterization of novel lytic Myoviridae bacteriophage ϕVP-1 enhances its applicability against MDR-biofilm-forming Vibrio parahaemolyticus. Arch. Virol. https://doi.org/10.1007/s00705-019-04493-6 (2019). [DOI: 10.1007/s00705-019-04493-6]
  57. Xu, J., Wang, D., Gui, M. & Xiang, Y. Structural assembly of the tailed bacteriophage ϕ29. Nat. Commun. 10, 2366 (2019). [PMID: 31147544]
  58. Yu, X. et al. Cryo-EM structure of human adenovirus D26 reveals the conservation of structural organization among human adenoviruses. Sci. Adv. 3, e1602670 (2017). [PMID: 28508067]
  59. Bhardwaj, A., Molineux, I. J., Casjens, S. R. & Cingolani, G. Atomic structure of bacteriophage Sf6 tail needle knob. J. Biol. Chem. 286, 30867–30877 (2011). [PMID: 21705802]
  60. Lee, H. S., Choi, S., Shin, H., Lee, J. H. & Choi, S. H. Vibrio vulnificus Bacteriophage SSP002 as a Possible Biocontrol Agent. Appl. Environ. Microbiol. 80, 515 (2014). [PMID: 24212569]
  61. Alanis Villa, A., Kropinski, A. M., Abbasifar, R., Abbasifar, A. & Griffiths, M. W. Genome Sequence of Temperate Vibrio parahaemolyticus Bacteriophage vB_VpaS_MAR10. J. Virol. 86, 13851 (2012). [PMID: 23166255]
  62. Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019). [PMID: 31068712]
  63. Liu, J. et al. Antimicrobial drug discovery through bacteriophage genomics. Nat. Biotechnol. 22, 185–191 (2004). [PMID: 14716317]
  64. Drulis-Kawa, Z., Majkowska-Skrobek, G. & Maciejewska, B. Bacteriophages and phage-derived proteins - application approaches. Curr. Med. Chem. 22, 1757–1773 (2015). [PMID: 25666799]
  65. Wang, W., Li, M., Lin, H., Wang, J. & Mao, X. The Vibrio parahaemolyticus-infecting bacteriophage qdvp001: genome sequence and endolysin with a modular structure. Arch. Virol. 161, 2645–2652 (2016). [PMID: 27376376]
  66. Zermeño-Cervantes, L. A., Makarov, R., Lomelí-Ortega, C. O., Martínez-Díaz, S. F. & Cardona-Félix, C. S. Recombinant LysVPMS1 as an endolysin with broad lytic activity against Vibrio parahaemolyticus strains associated to acute hepatopancreatic necrosis disease. Aquac. Res. 49, 1723–1726 (2018). [DOI: 10.1111/are.13577]
  67. Ultee, E., Ramijan, K., Dame, R. T., Briegel, A. & Claessen, D. Chapter Two - Stress-induced adaptive morphogenesis in bacteria. In Advances in Microbial Physiology (ed. Poole, R. K.) 74, 97–141 (Academic Press, 2019).
  68. Peters, J. M. et al. A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria. Cell 165, 1493–1506 (2016). [PMID: 27238023]
  69. Roucourt, B. & Lavigne, R. The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. Environ. Microbiol. 11, 2789–2805 (2009). [PMID: 19691505]
  70. Zhao, X. et al. Global Transcriptomic Analysis of Interactions between Pseudomonas aeruginosa and Bacteriophage PaP3. Sci. Rep. 6, 19237–19237 (2016). [PMID: 26750429]
  71. Chaikeeratisak, V. et al. Assembly of a nucleus-like structure during viral replication in bacteria. Science 355, 194 (2017). [PMID: 28082593]
  72. Chaikeeratisak, V. et al. The Phage Nucleus and Tubulin Spindle Are Conserved among Large Pseudomonas Phages. Cell Rep. 20, 1563–1571 (2017). [PMID: 28813669]
  73. Junprung, W., Supungul, P. & Tassanakajon, A. HSP70 and HSP90 are involved in shrimp Penaeus vannamei tolerance to AHPND-causing strain of Vibrio parahaemolyticus after non-lethal heat shock. Fish Shellfish Immunol. 60, 237–246 (2017). [PMID: 27888131]
  74. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35, 1547–1549 (2018). [PMID: 29722887]
  75. Klockgether, J. et al. Genome Diversity of Pseudomonas aeruginosa PAO1 Laboratory Strains. J. Bacteriol. 192, 1113 (2010). [PMID: 20023018]
  76. Serwer, P. et al. Improved isolation of undersampled bacteriophages: finding of distant terminase genes. Virology 329, 412–424 (2004). [PMID: 15518819]

Grants

  1. R01 GM033050/NIGMS NIH HHS
  2. R01 GM129245/NIGMS NIH HHS

MeSH Term

Bacteria
Bacteriophages
Chromosomes, Bacterial
Genome, Viral
Host Specificity
Microbial Viability
Protein Biosynthesis

Word Cloud

Created with Highcharts 10.0.0hostSeahorsepathogensvibriophagephagebacteriaVPnovelproteingenomeproteinsSinceemergencedeadlymultidrug-resistantalarminglyincreasedratebacteriophagesdevelopedcontrollingbioagentpreventspreadpathogenicOnedisease-causingVibrioparahaemolyticusinducesacutehepatopancreaticnecrosisconsideredonedeadliestshrimprecentlybecomeresistantvariousclassesantibioticsdiscoveredspecificallytargetsvibriodesignatedclassifiedfamilySiphoviridaeicosahedralcapsidsurroundedheadfibersnon-contractilelongtailPhageableinfectbroadrangepHtemperaturesrelativelyshortlatentperiodnearly30 minutesproducedprogeny72particlespercellendlyticcycleUponinfectionnucleoidcondensedbecametoroidalsimilarbacterialDNAmorphologyseentetracyclinetreatmentsuggestinghijackedbiosynthesispathwaystranslationencodes48openreadingframesmanyhypotheticalpotentialuntappedresourcediscoveryphage-derivedtherapeuticexhibitsinhibitoryactivitysynthesismachinery

Similar Articles

Cited By