Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber.

Pengcheng Zhao, Yan Zhao, Haihong Bao, Hoi Lut Ho, Wei Jin, Shangchun Fan, Shoufei Gao, Yingying Wang, Pu Wang
Author Information
  1. Pengcheng Zhao: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China. ORCID
  2. Yan Zhao: Department of Electrical Engineering and Photonics Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. ORCID
  3. Haihong Bao: Department of Electrical Engineering and Photonics Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. ORCID
  4. Hoi Lut Ho: Department of Electrical Engineering and Photonics Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. ORCID
  5. Wei Jin: Department of Electrical Engineering and Photonics Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. eewjin@polyu.edu.hk.
  6. Shangchun Fan: School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, 100191, China. shangcfan@buaa.edu.cn.
  7. Shoufei Gao: Department of Electrical Engineering and Photonics Research Center, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China. ORCID
  8. Yingying Wang: Beijing Engineering Research Centre of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing, 100124, China. ORCID
  9. Pu Wang: Beijing Engineering Research Centre of Laser Technology, Institute of Laser Engineering, Beijing University of Technology, Beijing, 100124, China.

Abstract

Laser spectroscopy outperforms electrochemical and semiconductor gas sensors in selectivity and environmental survivability. However, the performance of the state-of-the-art laser sensors is still insufficient for many high precision applications. Here, we report mode-phase-difference photothermal spectroscopy with a dual-mode anti-resonant hollow-core optical fiber and demonstrate all-fiber gas (acetylene) detection down to ppt (parts-per-trillion) and <1% instability over a period of 3 hours. An anti-resonant hollow-core fiber could be designed to transmit light signals over a broad wavelength range from visible to infrared, covering molecular absorption lines of many important gases. This would enable multi-component gas detection with a single sensing element and pave the way for ultra-precision gas sensing for medical, environmental and industrial applications.

References

  1. Laj, P. et al. Measuring atmospheric composition change. Atmos. Environ. 43, 5351–5414 (2009). [DOI: 10.1016/j.atmosenv.2009.08.020]
  2. Mahaffy, P. R. et al. The sample analysis at Mars investigation and instrument suite. Space Sci. Rev. 170, 401–478 (2012). [DOI: 10.1007/s11214-012-9879-z]
  3. Smith, D. & Španěl, P. The challenge of breath analysis for clinical diagnosis and therapeutic monitoring. Analyst 132, 390–396 (2007). [DOI: 10.1039/B700542N]
  4. Allen, M. G. Diode laser absorption sensors for gas-dynamic and combustion flows. Meas. Sci. Technol. 9, 545 (1998). [DOI: 10.1088/0957-0233/9/4/001]
  5. Liu, X. et al. A survey on gas sensing technology. Sensors 12, 9635–9665 (2012). [DOI: 10.3390/s120709635]
  6. Claps, R. et al. Ammonia detection by use of near-infrared diode-laser-based overtone spectroscopy. Appl. Opt. 40, 4387–4394 (2001). [DOI: 10.1364/AO.40.004387]
  7. Weibring, P. et al. Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance. Appl. Phys. B 85, 207–218 (2006). [DOI: 10.1007/s00340-006-2300-4]
  8. Ye, J., Ma, L. S. & Hall, J. L. Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy. JOSA B 15, 6–15 (1998). [DOI: 10.1364/JOSAB.15.000006]
  9. Zhao, G. et al. Shot-noise-limited Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry. Opt. Lett. 43, 715–718 (2018). [DOI: 10.1364/OL.43.000715]
  10. Foltynowicz, A. et al. Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential. Appl. Phys. B 92, 313 (2008). [DOI: 10.1007/s00340-008-3126-z]
  11. Tomberg, T., Hieta, T., Vainio, M. & Halonen, L. Cavity-enhanced cantilever-enhanced photo-acoustic spectroscopy. Analyst 144, 2291–2296 (2019). [DOI: 10.1039/C9AN00058E]
  12. Jin, W., Cao, Y. C., Yang, F. & Ho, H. L. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range. Nat. Commun. 6, 6767 (2015). [DOI: 10.1038/ncomms7767]
  13. Lin, Y. C., Jin, W., Yang, F., Tan, Y. Z. & Ho, H. L. Performance optimization of hollow-core fiber photothermal gas sensors. Opt. Lett. 42, 4712–4715 (2017). [DOI: 10.1364/OL.42.004712]
  14. Shemshad, J., Aminossadati, S. M. & Kizil, M. S. A review of developments in near infrared methane detection based on tunable diode laser. Sens. Actuat. B Chem. 171, 77–92 (2012). [DOI: 10.1016/j.snb.2012.06.018]
  15. Hodgkinson, J. & Tatam, R. P. Optical gas sensing: a review. Meas. Sci. Technol. 24, 012004 (2012). [DOI: 10.1088/0957-0233/24/1/012004]
  16. Culshaw, B., Stewart, G., Dong, F., Tandy, C. & Moodie, D. Fibre optic techniques for remote spectroscopic methane detection-from concept to system realisation. Sens. Actuat. B Chem. 51, 25–37 (1998). [DOI: 10.1016/S0925-4005(98)00184-1]
  17. Ho, H. L., Jin, W. & Demokan, M. S. Sensitive, multipoint gas detection using TDM and wavelength modulation spectroscopy. Electron. Lett. 36, 1191–1193 (2000). [DOI: 10.1049/el]
  18. Dangui, V., Kim, H. K., Digonnet, M. J. & Kino, G. S. Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers. Opt. Express 13, 6669–6684 (2005). [DOI: 10.1364/OPEX.13.006669]
  19. Pang, M., Xuan, H. F., Ju, J. & Jin, W. Influence of strain and pressure to the effective refractive index of the fundamental mode of hollow-core photonic bandgap fibers. Opt. Express 18, 14041–14055 (2010). [DOI: 10.1364/OE.18.014041]
  20. Reid, J. & Labrie, D. Second-harmonic detection with tunable diode lasers—comparison of experiment and theory. Appl. Phys. B 26, 203–210 (1981). [DOI: 10.1007/BF00692448]
  21. Allan, D. W. Statistics of atomic frequency standards. Proc. IEEE 54, 221–230 (1966). [DOI: 10.1109/PROC.1966.4634]
  22. Werle, P. O., Mücke, R. & Slemr, F. The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS). Appl. Phys. B 57, 131–139 (1993). [DOI: 10.1007/BF00425997]
  23. Heilig, A. et al. Gas identification by modulating temperatures of SnO2-based thick film sensors. Sens. Actuat. B Chem. 43, 45–51 (1997). [DOI: 10.1016/S0925-4005(97)00096-8]
  24. Hoo, Y. L., Liu, S., Ho, H. L. & Jin, W. Fast response microstructured optical fiber methane sensor with multiple side-openings. IEEE Photonic Tech. L. 22, 296–298 (2010). [DOI: 10.1109/LPT.2009.2039016]
  25. Michieletto, M. et al. Hollow-core fibers for high power pulse delivery. Opt. Express 24, 7103–7119 (2016). [DOI: 10.1364/OE.24.007103]
  26. Miziolek, A. W. & Sausa, R. C. Photochemical Ignition Studies. I. Laser Ignition of Flowing Premixed Gases. Technical Report BRL-TR-2644 (US Army Ballistic Research Laboratory, 1985).
  27. Osório, J. H. et al. Tailoring modal properties of inhibited-coupling guiding fibers by cladding modification. Sci. Rep. 9, 1376 (2019). [DOI: 10.1038/s41598-018-37948-y]
  28. Gao, S. F., Wang, Y. Y., Ding, W. & Wang, P. Hollow-core negative-curvature fiber for UV guidance. Opt. Lett. 43, 1347–1350 (2018). [DOI: 10.1364/OL.43.001347]
  29. Ding, W., Wang, Y. Y., Gao, S. F., Hong., Y. F. & Wang, P. Theoretical and experimental investigation of light guidance in hollow-core anti-resonant fiber. ACTA Phys. SIN-CH ED 67, 12 (2018).
  30. Yu, F. & Knight, J. C. Spectral attenuation limits of silica hollow core negative curvature fiber. Opt. Express 21, 21466–21471 (2013).
  31. Modugno, G., Corsi, C., Gabrysch, M. & Inguscio, M. Detection of HS at the ppm level using a telecommunication diode laser. Opt. Commun. 145, 76–80 (1998). [DOI: 10.1016/S0030-4018(97)00461-6]
  32. Nelson, D. D. et al. Characterization of a near-room-temperature, continuous-wave quantum cascade laser for long-term, unattended monitoring of nitric oxide in the atmosphere. Opt. Lett. 31, 2012–2014 (2006). [DOI: 10.1364/OL.31.002012]
  33. Kassi, S. et al. Looking into the volcano with a Mid-IR DFB diode laser and cavity enhanced absorption spectroscopy. Opt. Express 14, 11442–11452 (2006). [DOI: 10.1364/OE.14.011442]
  34. Crosson, E. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor. Appl. Phys. B 92, 403–408 (2008). [DOI: 10.1007/s00340-008-3135-y]
  35. Engel, G. S., Drisdell, W. S., Keutsch, F. N., Moyer, E. J. & Anderson, J. G. Ultrasensitive near-infrared integrated cavity output spectroscopy technique for detection of CO at 1.57 μm: new sensitivity limits for absorption measurements in passive optical cavities. Appl. Opt. 45, 9221–9229 (2006). [DOI: 10.1364/AO.45.009221]
  36. Rothman, L. S. et al. The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 96, 139–204 (2005). [DOI: 10.1016/j.jqsrt.2004.10.008]

Word Cloud

Created with Highcharts 10.0.0gasspectroscopyanti-resonanthollow-corefiberdetectionsensorsenvironmentalmanyapplicationsphotothermalopticalsensingLaseroutperformselectrochemicalsemiconductorselectivitysurvivabilityHoweverperformancestate-of-the-artlaserstillinsufficienthighprecisionreportmode-phase-differencedual-modedemonstrateall-fiberacetylenepptparts-per-trillionand <1%instabilityperiod3 hoursdesignedtransmitlightsignalsbroadwavelengthrangevisibleinfraredcoveringmolecularabsorptionlinesimportantgasesenablemulti-componentsingleelementpavewayultra-precisionmedicalindustrialMode-phase-difference

Similar Articles

Cited By