Valorization of Eggshell Biowaste for Sustainable Environmental Remediation.

Silvano Mignardi, Luana Archilletti, Laura Medeghini, Caterina De Vito
Author Information
  1. Silvano Mignardi: Department of Earth Sciences, Sapienza University of Rome, P.le A. Moro 5, I-00185, Rome, Italy. silvano.mignardi@uniroma1.it. ORCID
  2. Luana Archilletti: Department of Earth Sciences, Sapienza University of Rome, P.le A. Moro 5, I-00185, Rome, Italy.
  3. Laura Medeghini: Department of Earth Sciences, Sapienza University of Rome, P.le A. Moro 5, I-00185, Rome, Italy.
  4. Caterina De Vito: Department of Earth Sciences, Sapienza University of Rome, P.le A. Moro 5, I-00185, Rome, Italy.

Abstract

The management of large amounts of eggshell waste annually produced in the world is problematic as generally this material is only disposed at landfills with odor production and microbial growth. On the contrary, significant environmental and economic advantages could be obtained transforming this biowaste into new value-added products. Eggshell biowaste was the starting material for the synthesis of hydroxyapatite by a simple and sustainable procedure and applied for the removal of Co from aqueous solutions. The effects of contact time and initial metal concentration were investigated in batch experiments. Eggshell-based hydroxyapatite (ESHAP) before and after Co removal was characterized by X-ray diffraction and scanning electron microscopy. The process was rapid and reached equilibrium within 80 min. The removal efficiency was in the range 70-80% which is generally higher than other waste-derived adsorbents. Adsorption of Co on the surface of ESHAP particles and ion exchange with Ca resulting in the formation of a Co-phosphate are the main mechanisms of the metal removal. The conversion of eggshell waste to a low-cost adsorbent for the treatment of metal contaminated waters could contribute to a more sustainable and effective management of this biowaste.

References

  1. Quina, M. J., Soares, M. A. R. & Quinta-Ferreira, R. Applications of industrial eggshell as a valuable anthropogenic resource. Resour. Conserv. Recycl. 123, 176–186, https://doi.org/10.1016/j.resconrec.2016.09.027 (2017). [DOI: 10.1016/j.resconrec.2016.09.027]
  2. Radziemska, M., Vaverková, M. D., Adamcová, D., Brtnický, M. & Mazur, Z. Valorization of fish waste compost as a fertilizer for agricultural use. Waste Biomass Valor. 10, 2537–2545, https://doi.org/10.1007/s12649-018-0288-8 (2019). [DOI: 10.1007/s12649-018-0288-8]
  3. Meng, X. & Deng, D. Trash to treasure: waste eggshells used as reactor and template for synthesis of CoS nanorod arrays on carbon fibers for energy storage. Chem. Mater. 28, 3897–3904, https://doi.org/10.1021/acs.chemmater.6b01142 (2016). [DOI: 10.1021/acs.chemmater.6b01142]
  4. Adeogun, A. I., Ofudje, A. E., Idowu, M. A. & Kareem, S. O. Facile development of nano size calcium hydroxyapatite based ceramic from eggshells: synthesis and characterization. Waste Biomass Valor. 9, 1469–1473, https://doi.org/10.1007/s12649-017-9891-3 (2018). [DOI: 10.1007/s12649-017-9891-3]
  5. Food and Agriculture Organization of the United Nations: Statistics Division (FAOSTAT) Production: Livestock Primary: Eggs Primary, 2014, http://www.fao.org/faostat/en/#data/QL , Accessed 16 April 2019.
  6. Ferraz, E., Gamelas, J. A. F., Coroado, J., Monteiro, C. & Rocha, F. Eggshell waste to produce building lime: calcium oxide reactivity, industrial, environmental and economic implications. Mater. Struct. 51, 115, https://doi.org/10.1617/s11527-018-1243-7 (2018). [DOI: 10.1617/s11527-018-1243-7]
  7. Muliwa, A. M., Leswifi, T. Y. & Onyango, M. S. Performance evaluation of eggshell waste material for remediation of acid mine drainage from coal dump leachate. Miner. Eng. 122, 241–250, https://doi.org/10.1016/j.mineng.2018.04.009 (2018). [DOI: 10.1016/j.mineng.2018.04.009]
  8. Cree, D. & Rutter, A. Sustainable bio-inspired limestone eggshell powder for potential industrialized applications. ACS Sustain. Chem. Eng. 3, 941–949, https://doi.org/10.1021/acssuschemeng.5b00035 (2015). [DOI: 10.1021/acssuschemeng.5b00035]
  9. Singh, V. K., Chevli, M. H., Tauseef, S. M. & Siddiqui, N. A. Treatment of effluent from pharmaceutical industry using calcium oxide obtained from eggshells. In: Siddiqui, N., Tauseef, S., Bansal, K. (eds.) Advances in Health and Environment Safety, pp. 327–343. Springer, Singapore (2018).
  10. Sarder, M. R., Hafiz, N. A. & Alamgir, M. Study on the effective reuse of eggshells as a resource recovery from municipal solid waste. In: Ghosh, S. (ed.) Waste Management and Resource Efficiency, pp. 71–79. Springer, Singapore (2019).
  11. Ummartyotin, S. & Manuspiya, H. A critical review of eggshell waste: An effective source of hydroxyapatite as photocatalyst. J. Met. Mat. Miner. 28, 124–135, https://doi.org/10.14456/jmmm.2018.17 (2018). [DOI: 10.14456/jmmm.2018.17]
  12. Wu, S. C. et al. A hydrothermal synthesis of eggshell and fruit waste extract to produce nanosized hydroxyapatite. Ceram. Int. 39, 8183–8188, https://doi.org/10.1016/j.ceramint.2013.03.094 (2013). [DOI: 10.1016/j.ceramint.2013.03.094]
  13. Stadelman, W. J. Eggs and egg products. In: Francis, F. J. (ed.) Encyclopedia of Food Science and Technology, pp. 593–599. John Wiley & Sons, New York (2000).
  14. Zhang, X. et al. Waste eggshell-derived dual-functional CuO/ZnO/eggshell nanocomposites: (Photo)catalytic reduction and bacterial inactivation. ACS Sustainable Chem. Eng. 7, 15762–15771, https://doi.org/10.1021/acssuschemeng.9b04083 (2019). [DOI: 10.1021/acssuschemeng.9b04083]
  15. Guo, Y. et al. Enhanced catalytic benzene oxidation over a novel waste-derived Ag/eggshell catalyst. J. Mater. Chem. A 7, 8832–8844, https://doi.org/10.1039/C8TA10822F (2019). [DOI: 10.1039/C8TA10822F]
  16. Guo, Y. et al. Biogenic Pt/CaCO nanocomposite as a robust catalyst toward benzene oxidation. ACS Appl. Mater. Interfaces 12, 2469–2480, https://doi.org/10.1021/acsami.9b18490 (2019). [DOI: 10.1021/acsami.9b18490]
  17. De Angelis, G., Medeghini, L., Conte, A. M. & Mignardi, S. Recycling of eggshell waste into low-cost adsorbent for Ni removal from wastewater. J. Clean. Prod. 164, 1497–1506, https://doi.org/10.1016/j.jclepro.2017.07.085 (2017). [DOI: 10.1016/j.jclepro.2017.07.085]
  18. Francis, A. A. & Abdel Rahman, M. K. The environmental sustainability of calcined calcium phosphates production from the milling of eggshell wastes and phosphoric acid. J. Clean. Prod. 137, 1432–1438, https://doi.org/10.1016/j.jclepro.2016.08.029 (2016). [DOI: 10.1016/j.jclepro.2016.08.029]
  19. European Commission Report on critical raw materials and the circular economy, http://ec.europa.eu/docsroom/documents/27348 , Accessed 16 April 2019 (2018).
  20. Cao, X., Ma, L. Q., Chen, M., Singh, S. P. & Harris, W. G. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environ. Sci. Technol. 36, 5296–5304, https://doi.org/10.1021/es020697j (2002). [DOI: 10.1021/es020697j]
  21. Corami, A., Mignardi, S. & Ferrini, V. Copper and zinc decontamination from single- and binary-metal solutions using hydroxyapatite. J. Hazard. Mater. 146, 164–170, https://doi.org/10.1016/j.jhazmat.2006.12.003 (2007). [DOI: 10.1016/j.jhazmat.2006.12.003]
  22. Corami, A., Mignardi, S. & Ferrini, V. Cadmium removal from single- and multi-metal (Cd+Pb+Zn+Cu) solutions by sorption on hydroxyapatite. J. Colloid Interf. Sci. 317, 402–408, https://doi.org/10.1016/j.jcis.2007.09.075 (2008). [DOI: 10.1016/j.jcis.2007.09.075]
  23. Mavropoulos, E. et al. Studies on the mechanism of lead immobilization by hydroxyapatite. Environ. Sci. Technol. 36, 1625–1629, https://doi.org/10.1021/es0155938 (2002). [DOI: 10.1021/es0155938]
  24. Mignardi, S., Corami, A. & Ferrini, V. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Chemosphere 86, 354–360, https://doi.org/10.1016/j.chemosphere.2011.09.050 (2012). [DOI: 10.1016/j.chemosphere.2011.09.050]
  25. Mignardi, S., Corami, A. & Ferrini, V. Immobilization of Co and Ni in mining-impacted soils using phosphate amendments. Water Air Soil Poll. 224, 1447, https://doi.org/10.1007/s11270-013-1447-y (2013). [DOI: 10.1007/s11270-013-1447-y]
  26. Smičiklas, I., Onjia, A., Raičević, S., Janaćković, Ð. & Mitrić, M. Factors influencing the removal of divalent cations by hydroxyapatite. J. Hazard. Mater. 152, 876–884, https://doi.org/10.1016/j.jhazmat.2007.07.056 (2008). [DOI: 10.1016/j.jhazmat.2007.07.056]
  27. Dimović, S., Smičiklas, I., Plećaš, I., Antonović, D. & Mitrić, D. Comparative study of differently treated animal bones for Co removal. J. Hazard. Mater. 164, 279–287, https://doi.org/10.1016/j.jhazmat.2008.08.013 (2009). [DOI: 10.1016/j.jhazmat.2008.08.013]
  28. Huang, Y., Chen, L. & Wang, H. Removal of Co(II) from aqueous solution by using hydroxyapatite. J. Radioanal. Nucl. Chem. 291, 777–785, https://doi.org/10.1007/s10967-011-1351 (2012). [DOI: 10.1007/s10967-011-1351]
  29. Pan, X., Wang, J. & Zhang, D. Sorption of cobalt to bone char: Kinetics, competitive sorption and mechanism. Desalination 249, 609–614, https://doi.org/10.1016/j.desal.2009.01.027 (2009). [DOI: 10.1016/j.desal.2009.01.027]
  30. Meski, S., Ziani, S. & Khireddine, H. Removal of lead ions by hydroxyapatite prepared from the egg shell. J. Chem. Eng. Data 55, 3923–3928, https://doi.org/10.1021/je901070e (2010). [DOI: 10.1021/je901070e]
  31. Lagergren, S. About the theory of so-called adsorption of soluble substances. K. Sven. Vetenskapsakad. Handl. 24, 1–39 (1898).
  32. Ho, Y. S. & McKay, G. Sorption of dyes and copper onto biosorbents. Process Biochem. 38, 1047–1061, https://doi.org/10.1016/S0032-9592(02)00239-X (2003). [DOI: 10.1016/S0032-9592(02)00239-X]
  33. Weber, W. J. & Morris, J. C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31–60 (1963).
  34. Chen, N. et al. Fluoride removal from water by granular ceramic adsorption. J. Colloid Interf. Sci. 348, 579–584, https://doi.org/10.1016/j.jcis.2010.04.048 (2010). [DOI: 10.1016/j.jcis.2010.04.048]
  35. Liu, Q., Guo, H. M. & Shan, Y. Adsorption of fluoride on synthetic siderite from aqueous solution. J. Fluor. Chem. 131, 635–641, https://doi.org/10.1016/j.jfluchem.2010.02.006 (2009). [DOI: 10.1016/j.jfluchem.2010.02.006]
  36. Langmuir, I. Adsorption of gases on plain surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918). [DOI: 10.1021/ja02242a004]
  37. Freundlich, H. M. F. Over the adsorption in solution. J. Phys. Chem. 57, 385–471 (1906).
  38. Temkin, M. I. & Pyzhev, V. Recent modifications to Langmuir isotherms. Acta Phys. Chim. USSR 12, 217–222 (1940).
  39. Dubinin, M. M. & Radushkevich, L. V. The equation of the characteristic curve of the activated charcoal. Proc. Acad. Sci. USSR Phys. Chem. Sect. 55, 331–337 (1947).
  40. Foo, K. Y. & Hameed, B. H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10, https://doi.org/10.1016/j.cej.2009.09.013 (2010). [DOI: 10.1016/j.cej.2009.09.013]
  41. Amer, M. W., Ahmad, R. A. & Awwad, A. M. Biosorption of Cu(II), Ni(II), Zn(II) and Pb(II) ions from aqueous solution by Sophora japonica pods powder. Int. J. Ind. Chem. 6, 67–75, https://doi.org/10.1007/s40090-014-0030-8 (2015). [DOI: 10.1007/s40090-014-0030-8]
  42. Kalavathy, M. H., Karthikeyan, T., Rajgopal, S. & Miranda, L. R. Kinetic and isotherm studies of Cu(II) adsorption onto HPO-activated rubber wood sawdust. J. Colloid Interface Sci. 292, 354–362, https://doi.org/10.1016/j.jcis.2005.05.087 (2005). [DOI: 10.1016/j.jcis.2005.05.087]
  43. Yakovenchuk, V. N., Ivanyuk, G. Y., Mikhailova, Y. A., Selivanova, E. A. & Krivovichev, S. V. Pakhomovskyite, Co(PO)∙8HO, a new mineral species from Kovdor, Kola Peninsula, Russia. Can. Mineral. 44, 117–123, https://doi.org/10.2113/gscanmin.44.1.117 (2006). [DOI: 10.2113/gscanmin.44.1.117]
  44. Tang, J., Li, Y., Wang, X. & Daroch, M. Effective adsorption of aqueous Pb by dried biomass of Landoltia punctata and Spirodela polyrhiza. J. Clean. Prod. 145, 25–34, https://doi.org/10.1016/j.jclepro.2017.01.038 (2017). [DOI: 10.1016/j.jclepro.2017.01.038]
  45. Smiljanić, S., Smičiklas, I., Perić-Grujić, A., Lončarc, B. & Mitrić, M. Rinsed and thermally treated red mud sorbents for aqueous Ni ions. Chem. Eng. J. 162, 75–83, https://doi.org/10.1016/j.cej.2010.04.062 (2010). [DOI: 10.1016/j.cej.2010.04.062]
  46. Xu, D., Tan, X. L., Chen, C. L. & Wang, X. K. Adsorption of Pb(II) from aqueous solution to MX-80 bentonite: Effect of pH, ionic strength, foreign ions and temperature. Appl. Clay Sci. 41, 37–46, https://doi.org/10.1016/j.clay.2007.09.004 (2008). [DOI: 10.1016/j.clay.2007.09.004]
  47. Eren, E., Afsin, B. & Onal, Y. Removal of lead ions by acid activated and manganese oxide-coated bentonite. J. Hazard. Mater. 161, 677–685, https://doi.org/10.1016/j.jhazmat.2008.04.020 (2009). [DOI: 10.1016/j.jhazmat.2008.04.020]
  48. Özcan, A., Safa Özcan, A., Tunali, S., Akar, T. & Kiran, I. Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum. J. Hazard. Mater. 124, 200–208, https://doi.org/10.1016/j.jhazmat.2005.05.007 (2005). [DOI: 10.1016/j.jhazmat.2005.05.007]
  49. Oliveira, D. A., Benelli, P. & Amante, E. R. A literature review on adding value to solid residues: egg shells. J. Clean. Prod. 46, 42–47, https://doi.org/10.1016/j.jclepro.2012.09.045 (2013). [DOI: 10.1016/j.jclepro.2012.09.045]
  50. Ahmadpour, A., Tahmasbi, M., Rohani Bastami, T. & Amel Besharati, J. Rapid removal of cobalt ion from aqueous solutions by almond green hull. J. Hazard. Mater. 166, 925–930, https://doi.org/10.1016/j.jhazmat.2008.11.103 (2009). [DOI: 10.1016/j.jhazmat.2008.11.103]
  51. Parab, H. et al. Determination of kinetic and equilibrium parameters of the batch adsorption of Co(II), Cr(III) and Ni(II) onto coir pith. Process Biochem. 41, 609–615, https://doi.org/10.1016/j.procbio.2005.08.006 (2006). [DOI: 10.1016/j.procbio.2005.08.006]
  52. Smičiklas, I., Dimovic, S., Plećaš, I. & Mitrić, M. Removal of Co from aqueous solutions by hydroxyapatite. Water Res. 40, 2267–2274, https://doi.org/10.1016/j.watres.2006.04.031 (2006). [DOI: 10.1016/j.watres.2006.04.031]
  53. Demirbas, E. Adsorption of cobalt(II) ions from aqueous solution onto activated carbon prepared from hazelnut shells. Adsorpt. Sci. Technol. 21, 951–963, https://doi.org/10.1260/02636170360744380 (2003). [DOI: 10.1260/02636170360744380]
  54. Abbas, M., Kaddour, S. & Trari, M. Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J. Ind. Eng. Chem. 20, 745–751, https://doi.org/10.1016/j.jiec.2013.06.030 (2014). [DOI: 10.1016/j.jiec.2013.06.030]
  55. Bhatnagar, A., Minocha, A. K. & Sillanpää, M. Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem. Eng. 48, 181–186, https://doi.org/10.1016/j.bej.2009.10.005 (2010). [DOI: 10.1016/j.bej.2009.10.005]
  56. Vijayaraghavan, K., Thilakavathi, M., Palanivelu, K. & Velan, M. Continuous sorption of copper and cobalt by crab shell particles in a packed column. Environ. Technol. 26, 267–276, https://doi.org/10.1080/09593332608618566 (2005). [DOI: 10.1080/09593332608618566]
  57. Al-Shahrani, S. S. Treatment of wastewater contaminated with cobalt using Saudi activated bentonite. Alexandria Eng. J. 53, 205–211, https://doi.org/10.1016/j.aej.2013.10.006 (2014). [DOI: 10.1016/j.aej.2013.10.006]

Word Cloud

Created with Highcharts 10.0.0removalbiowasteCometalmanagementeggshellwastegenerallymaterialEggshellhydroxyapatitesustainableESHAPlargeamountsannuallyproducedworldproblematicdisposedlandfillsodorproductionmicrobialgrowthcontrarysignificantenvironmentaleconomicadvantagesobtainedtransformingnewvalue-addedproductsstartingsynthesissimpleprocedureappliedaqueoussolutionseffectscontacttimeinitialconcentrationinvestigatedbatchexperimentsEggshell-basedcharacterizedX-raydiffractionscanningelectronmicroscopyprocessrapidreachedequilibriumwithin80 minefficiencyrange70-80%higherwaste-derivedadsorbentsAdsorptionsurfaceparticlesionexchangeCaresultingformationCo-phosphatemainmechanismsconversionlow-costadsorbenttreatmentcontaminatedwaterscontributeeffectiveValorizationBiowasteSustainableEnvironmentalRemediation

Similar Articles

Cited By