Viral and Bacterial Fecal Indicators in Untreated Wastewater across the Contiguous United States Exhibit Geospatial Trends.

Asja Korajkic, Brian McMinn, Michael P Herrmann, Mano Sivaganesan, Catherine A Kelty, Pat Clinton, Maliha S Nash, Orin C Shanks
Author Information
  1. Asja Korajkic: U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA.
  2. Brian McMinn: U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA.
  3. Michael P Herrmann: U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA.
  4. Mano Sivaganesan: U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA.
  5. Catherine A Kelty: U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA.
  6. Pat Clinton: U.S. Environmental Protection Agency, Office of Research and Development, Newport, Oregon, USA.
  7. Maliha S Nash: U.S. Environmental Protection Agency, Office of Research and Development, Newport, Oregon, USA.
  8. Orin C Shanks: U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, Ohio, USA shanks.orin@epa.gov.

Abstract

Cultivated fecal indicator bacteria such as and enterococci are typically used to assess the sanitary quality of recreational waters. However, these indicators suffer from several limitations, such as the length of time needed to obtain results and the fact that they are commensal inhabitants of the gastrointestinal tract of many animals and have fate and transport characteristics dissimilar to pathogenic viruses. Numerous emerging technologies that offer same-day water quality results or pollution source information or that more closely mimic persistence patterns of disease-causing pathogens that may improve water quality management are now available, but data detailing geospatial trends in wastewater across the United States are sparse. We report geospatial trends of cultivated bacteriophage (somatic, F, and total coliphages and GB-124 phage), as well as genetic markers targeting polyomavirus, enterococci, , , and human-associated spp. (HF183/BacR287 and HumM2) in 49 primary influent sewage samples collected from facilities across the contiguous United States. Samples were selected from rural and urban facilities spanning broad latitude, longitude, elevation, and air temperature gradients by using a geographic information system stratified random site selection procedure. Most indicators in sewage demonstrated a remarkable similarity in concentration regardless of location. However, some exhibited predictable shifts in concentration based on either facility elevation or local air temperature. Geospatial patterns identified in this study, or the absence of such patterns, may have several impacts on the direction of future water quality management research, as well as the selection of alternative metrics to estimate sewage pollution on a national scale. This study provides multiple insights to consider for the application of bacterial and viral indicators in sewage to surface water quality monitoring across the contiguous United States, ranging from method selection considerations to future research directions. Systematic testing of a large collection of sewage samples confirmed that crAssphage genetic markers occur at a higher average concentration than key human-associated spp. on a national scale. Geospatial testing also suggested that some methods may be more suitable than others for widespread implementation. Nationwide characterization of indicator geospatial trends in untreated sewage represents an important step toward the validation of these newer methods for future water quality monitoring applications. In addition, the large paired-measurement data set reported here affords the opportunity to conduct a range of secondary analyses, such as the generation of new or updated quantitative microbial risk assessment models used to estimate public health risk.

Keywords

References

  1. J Microbiol Methods. 2010 Sep;82(3):311-8 [PMID: 20643165]
  2. Nat Commun. 2019 Mar 8;10(1):1124 [PMID: 30850636]
  3. Food Environ Virol. 2019 Mar;11(1):52-64 [PMID: 30426392]
  4. Microbiol Mol Biol Rev. 2019 Oct 2;83(4): [PMID: 31578217]
  5. Water Res. 2018 Nov 15;145:769-778 [PMID: 30223182]
  6. Appl Environ Microbiol. 2016 Apr 18;82(9):2773-2782 [PMID: 26921430]
  7. Lett Appl Microbiol. 2007 Apr;44(4):351-6 [PMID: 17397471]
  8. Lett Appl Microbiol. 2011 Mar;52(3):298-306 [PMID: 21204885]
  9. Appl Environ Microbiol. 2013 May;79(9):2906-13 [PMID: 23435885]
  10. J Virol Methods. 2017 Dec;250:25-28 [PMID: 28939117]
  11. Appl Environ Microbiol. 2015 Oct;81(19):6567-76 [PMID: 26162883]
  12. Ecology. 2011 Apr;92(4):797-804 [PMID: 21661542]
  13. J Virol Methods. 2018 Dec;262:79-88 [PMID: 30336954]
  14. Water Res. 2007 Aug;41(16):3701-15 [PMID: 17644149]
  15. Appl Environ Microbiol. 2009 Jun;75(11):3379-88 [PMID: 19346361]
  16. Appl Environ Microbiol. 2015 Dec 18;82(4):1316-1323 [PMID: 26682850]
  17. Appl Environ Microbiol. 1998 Nov;64(11):4307-12 [PMID: 9797281]
  18. Environ Sci Technol. 2012 Jan 17;46(2):1163-9 [PMID: 22107174]
  19. Environ Microbiol Rep. 2012 Apr;4(2):217-26 [PMID: 23757276]
  20. Environ Sci Technol. 2017 Aug 15;51(16):9146-9154 [PMID: 28700235]
  21. Lett Appl Microbiol. 2017 Jul;65(1):11-26 [PMID: 28304098]
  22. J Pharm Biomed Anal. 2019 May 10;168:55-63 [PMID: 30784890]
  23. Water Res. 2010 Sep;44(16):4726-35 [PMID: 20701947]
  24. Appl Environ Microbiol. 2012 Oct;78(19):7042-7 [PMID: 22843531]
  25. Appl Environ Microbiol. 2009 Nov;75(22):7261-7 [PMID: 19767474]
  26. Sci Rep. 2019 Jun 25;9(1):9246 [PMID: 31239501]
  27. Sci Total Environ. 2018 Mar;616-617:669-677 [PMID: 29103646]
  28. Appl Environ Microbiol. 2012 Jun;78(12):4225-32 [PMID: 22504809]
  29. Water Res. 2013 Nov 1;47(17):6750-61 [PMID: 24094728]
  30. Appl Environ Microbiol. 2011 May;77(9):2992-3001 [PMID: 21378055]
  31. Curr Opin Biotechnol. 2019 Jun;57:145-150 [PMID: 31009920]
  32. Syst Appl Microbiol. 2010 Oct;33(6):348-57 [PMID: 20655680]
  33. Lett Appl Microbiol. 2014 Jul;59(1):115-21 [PMID: 24725119]
  34. Appl Environ Microbiol. 2008 Jan;74(2):531-4 [PMID: 18024674]
  35. Environ Sci Technol. 2016 Nov 1;50(21):11593-11601 [PMID: 27709921]
  36. Water Res. 2019 Apr 15;153:263-273 [PMID: 30735956]
  37. ISME J. 2014 Feb;8(2):430-40 [PMID: 23985745]
  38. Syst Appl Microbiol. 2000 Dec;23(4):556-62 [PMID: 11249026]
  39. Proc Natl Acad Sci U S A. 2008 Aug 12;105 Suppl 1:11505-11 [PMID: 18695215]
  40. mBio. 2015 Feb 24;6(2):e02574 [PMID: 25714718]
  41. Appl Environ Microbiol. 2000 Oct;66(10):4571-4 [PMID: 11010920]
  42. FEMS Microbiol Lett. 2016 Sep;363(17): [PMID: 27481701]
  43. J Microbiol Methods. 2018 Sep;152:135-142 [PMID: 30017849]
  44. Food Environ Virol. 2019 Jun;11(2):113-119 [PMID: 30758724]
  45. Water Res. 2019 Nov 1;164:114898 [PMID: 31404902]
  46. Water Res. 2018 Sep 1;140:200-210 [PMID: 29715644]
  47. Nat Commun. 2014 Jul 24;5:4498 [PMID: 25058116]
  48. Environ Health. 2017 May 12;16(1):45 [PMID: 28499453]
  49. J Water Health. 2008 Jun;6(2):225-37 [PMID: 18209285]
  50. Food Environ Virol. 2019 Dec;11(4):400-409 [PMID: 31446609]
  51. Environ Int. 2019 May;126:252-259 [PMID: 30822654]
  52. Appl Environ Microbiol. 2009 Sep;75(17):5507-13 [PMID: 19592537]
  53. Appl Environ Microbiol. 2015 Jul;81(14):4669-81 [PMID: 25934626]
  54. Appl Environ Microbiol. 2004 Sep;70(9):5695-7 [PMID: 15345463]
  55. Appl Environ Microbiol. 2018 Aug 1;84(16): [PMID: 29884761]
  56. Water Res. 2018 Mar 15;131:142-150 [PMID: 29281808]
  57. Appl Environ Microbiol. 2014 May;80(10):3086-94 [PMID: 24610857]
  58. Appl Environ Microbiol. 2019 Jul 1;85(14): [PMID: 31076423]
  59. Environ Sci Technol. 2010 Aug 15;44(16):6281-8 [PMID: 20704227]
  60. J Virol Methods. 2017 Nov;249:58-65 [PMID: 28843788]
  61. Water Res. 2010 Sep;44(16):4674-91 [PMID: 20656314]
  62. J Appl Microbiol. 2019 Mar;126(3):985-994 [PMID: 30592123]
  63. Microb Biotechnol. 2017 Nov;10(6):1775-1780 [PMID: 28925595]
  64. Appl Environ Microbiol. 1993 Sep;59(9):2956-62 [PMID: 8215367]
  65. Biol Lett. 2014 Feb 12;10(2):20131037 [PMID: 24522631]

MeSH Term

Bacterial Load
Environmental Monitoring
Feces
Geography
Sewage
Spatial Analysis
United States
Viral Load
Waste Disposal, Fluid
Wastewater
Water Quality

Chemicals

Sewage
Waste Water

Word Cloud

Created with Highcharts 10.0.0sewagequalitywaterindicatorsgeospatialacrossUnitedStatespatternsmaytrendsselectionconcentrationGeospatialfuturefecalindicatorenterococciusedHoweverseveralresultspollutionsourceinformationmanagementdatawastewaterbacteriophagewellgeneticmarkershuman-associatedsppsamplesfacilitiescontiguouselevationairtemperaturestudyresearchestimatenationalscalemonitoringtestinglargemethodsmicrobialriskCultivatedbacteriatypicallyassesssanitaryrecreationalwaterssufferlimitationslengthtimeneededobtainfactcommensalinhabitantsgastrointestinaltractmanyanimalsfatetransportcharacteristicsdissimilarpathogenicvirusesNumerousemergingtechnologiesoffersame-daycloselymimicpersistencedisease-causingpathogensimprovenowavailabledetailingsparsereportcultivatedsomaticFtotalcoliphagesGB-124phagetargetingpolyomavirusHF183/BacR287HumM249primaryinfluentcollectedSamplesselectedruralurbanspanningbroadlatitudelongitudegradientsusinggeographicsystemstratifiedrandomsiteproceduredemonstratedremarkablesimilarityregardlesslocationexhibitedpredictableshiftsbasedeitherfacilitylocalidentifiedabsenceimpactsdirectionalternativemetricsprovidesmultipleinsightsconsiderapplicationbacterialviralsurfacerangingmethodconsiderationsdirectionsSystematiccollectionconfirmedcrAssphageoccurhigheraveragekeyalsosuggestedsuitableotherswidespreadimplementationNationwidecharacterizationuntreatedrepresentsimportantsteptowardvalidationnewerapplicationsadditionpaired-measurementsetreportedaffordsopportunityconductrangesecondaryanalysesgenerationnewupdatedquantitativeassessmentmodelspublichealthViralBacterialFecalIndicatorsUntreatedWastewaterContiguousExhibitTrendsgeneraltracking

Similar Articles

Cited By