Elaeocarpus reticulatus fruit extracts reduce viability and induce apoptosis in pancreatic cancer cells in vitro.

Alexandria Turner, Danielle R Bond, Quan V Vuong, Anita Chalmers, Emma L Beckett, Judith Weidenhofer, Christopher J Scarlett
Author Information
  1. Alexandria Turner: School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia. alexandria.turner@uon.edu.au. ORCID
  2. Danielle R Bond: School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.
  3. Quan V Vuong: School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.
  4. Anita Chalmers: School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.
  5. Emma L Beckett: School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.
  6. Judith Weidenhofer: Hunter Medical Research Institute, New Lambton Heights, 2305, Australia.
  7. Christopher J Scarlett: School of Environmental and Life Sciences, University of Newcastle, Ourimbah, 2258, Australia.

Abstract

Treatment options for pancreatic cancer (PC) are severely limited due to late diagnosis, early metastasis and the inadequacy of chemotherapy and radiotherapy to combat the aggressive biology of the disease. In recent years, plant-derived bioactive compounds have emerged as a source of novel, anti-cancer agents. Used in traditional medicine worldwide, Elaeocarpus species have reported anti-inflammatory, antioxidant and anti-cancer properties. This study aimed to isolate and identify potential anti-PC compounds in the fruit of Elaeocarpus reticulatus Sm. A 50% acetone crude extract significantly decreased the viability of four pancreatic cell lines (≥ 10 µg/mL for BxPC-3 cells) and induced apoptosis in BxPC-3 and HPDE cells. Analysis by HPLC identified the triterpenoid Cucurbitacin I as a likely component of the extract. Furthermore, treatment with Cucurbitacin I significantly reduced the viability of HPDE and BxPC-3 cells, with results comparable to the same concentration of gemcitabine. Interestingly, attempts to isolate bioactive compounds revealed that the crude extract was more effective at reducing PC-cell viability than the fractionated extracts. This study provides initial insight into the bioactive constituents of E. reticulatus fruits.

Keywords

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics. CA Cancer J Clin 68(1):7–30 [PMID: 29313949]
  2. Rawla P, Sunkara T, Gaduputi V (2019) Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol 10(1):10–27 [PMID: 30834048]
  3. Ilic M, Ilic I (2016) Epidemiology of pancreatic cancer. World J Gastroenterol 22(44):9694–9705 [PMID: 27956793]
  4. Falasca M, Kim M, Casari I (2016) Pancreatic cancer: current research and future directions. BBA Rev Cancer 1865:123–132
  5. Hashimoto D et al (2016) Heterogeneity of KRAS mutations in pancreatic ductal adenocarcinoma. Pancreas 45(8):1111–1114 [PMID: 26967456]
  6. Verbeke C (2016) Morphological heterogeneity in ductal adenocarcinoma of the pancreas—does it matter? Pancreatology 16(3):295–301 [PMID: 26924665]
  7. Kleppe M, Levine RL (2014) Tumor heterogeneity confounds and illuminates: assessing the implications. Nat Med 20(4):342–344 [PMID: 24710377]
  8. Apaya MK, Chang MT, Shyur LF (2016) Phytomedicine polypharmacology: cancer therapy through modulating the tumor microenvironment and oxylipin dynamics. Pharmacol Ther 162:1–206
  9. Apte MV et al (2013) A starring role for stellate cells in the pancreatic cancer microenvironment. Gastroenterology 144(6):1210–1219 [PMID: 23622130]
  10. Jiang J-H et al (2015) Epithelial–mesenchymal transition in pancreatic cancer: is it a clinically significant factor? BBA Rev Cancer 1855:43–49
  11. Abel EV, Simeone DM (2013) Biology and clinical applications of pancreatic cancer stem cells. Gastroenterology 144(6):1241–1248 [PMID: 23622133]
  12. Li Y et al (2013) Pancreatic cancer stem cells: emerging target for designing novel therapy. Cancer Lett 338(1):94–100 [PMID: 22445908]
  13. Tang B et al (2016) Calcium sensing receptor suppresses human pancreatic tumorigenesis through a novel NCX1/Ca/beta-catenin signaling pathway. Cancer Lett 377(1):44–54 [PMID: 27108064]
  14. Jones S et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806 [PMID: 18772397]
  15. Waddell N et al (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518(7540):495–501 [PMID: 25719666]
  16. Dimou F et al (2015) Trends in receipt and timing of multimodality therapy in early-stage pancreatic cancer. J Gastrointest Surg 20(1):93–103 [PMID: 26503262]
  17. Conroy T et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. New Engl J Med 364(19):1817–1825 [PMID: 21561347]
  18. Chiorean EG, Coveler AL (2015) Pancreatic cancer: optimizing treatment options, new, and emerging targeted therapies. Drug Des Dev Ther 9:3529–3545
  19. Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4(3):143–159 [PMID: 22351564]
  20. Bhanot A, Sharma R, Noolvi MN (2011) Natural sources as potential anti-cancer agents: a review. Int J Phytomed 3(1):18
  21. Tewari D, Rawat P, Singh PK (2019) Adverse drug reactions of anticancer drugs derived from natural sources. Food Chem Toxicol 123:522–535 [PMID: 30471312]
  22. Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335 [PMID: 22316239]
  23. Liu LF et al (2000) Mechanism of action of camptothecin. Ann N Y Acad Sci 922(1):1–10 [PMID: 11193884]
  24. Dumontet C, Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9(10):790–803 [PMID: 20885410]
  25. Vaccaro V et al (2015) Metastatic pancreatic cancer: is there a light at the end of the tunnel? World J Gastroenterol 21(16):4788–4801 [PMID: 25944992]
  26. Gardner ER et al (2008) Randomized crossover pharmacokinetic study of solvent-based paclitaxel and nab-paclitaxel. Clin Cancer Res 14(13):4200–4205 [PMID: 18594000]
  27. Passacantilli I et al (2018) Co-treatment with gemcitabine and nab-paclitaxel exerts additive effects on pancreatic cancer cell death. Oncol Rep 39(4):1984–1990 [PMID: 29393478]
  28. Mohanty S, Cock IE (2012) The chemotherapeutic potential of Terminalia ferdinandiana: phytochemistry and bioactivity. Pharmacogn Rev 6(11):29–36 [PMID: 22654402]
  29. Vuong QV et al (2014) Fruit-derived phenolic compounds and pancreatic cancer: perspectives from Australian native fruits. J Ethnopharmacol 152(2):227–242 [PMID: 24463158]
  30. Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev 2(5):270–278 [PMID: 20716914]
  31. Rickard S (2011) The new ornamental garden. CSIRO Publishing Gardening Guides, Collingwood
  32. Vuong QV et al (2018) Fruit characteristics, phytochemical and antioxidant properties of blueberry ash (Elaeocarpus reticulatus). Heliyon 4(10):e00834 [PMID: 30302412]
  33. Michael JP (2016) Chapter one—Simple indolizidine and quinolizidine alkaloids. In: Hans-Joachim K (ed) The alkaloids: chemistry and biology. Academic Press, Cambridge, pp 1–498
  34. Singh RK, Bhattacharya SK, Acharya SB (2000) Studies on extracts of Elaeocarpus sphaericus fruits on in vitro rat mast cells. Phytomedicine 7(3):205–207 [PMID: 11185731]
  35. Garg K, Goswami K, Khurana G (2013) A pharmacognostical review on Elaeocarpus sphaericus. Int J Pharm Pharm Sci 5:3–8
  36. Utami R et al (2013) Phenolic contents, antioxidant and cytotoxic activities of Elaeocarpus floribundus Blume. Pak J Pharm Sci 26(2):245–250 [PMID: 23455191]
  37. Hule AK et al (2011) An evaluation of the antidiabetic effects of Elaeocarpus ganitrus in experimental animals. Indian J Pharmacol 43(1):56–59 [PMID: 21455423]
  38. Singh B et al (2015) Phytochemical and biological aspects of Rudraksha, the stony endocarp of Elaeocarpus ganitrus (Roxb.): a review. Isr J Plant Sci 62(4):1–11
  39. Geetha DH, Rajeswari M, Jayashree I (2013) Chemical profiling of Elaeocarpus serratus L. by GC-MS. Asian Pac J Trop Biomed 3(12):985–987 [PMID: 24093791]
  40. Joshi S et al (2012) A comprehensive report on therapeutic potential of Elaeocarpus ganitrus Roxb.(Rudraksha). Environ Conserv J 13(3):147–150
  41. Meng D et al (2008) Cytotoxic cucurbitane-type triterpenoids from Elaeocarpus hainanensis. Planta Med 74(14):1741–1744 [PMID: 18937166]
  42. Fang X et al (1984) Plant anticancer agents, XXXIV. Cucurbitacins from Elaeocarpus dolichostylus. J Nat Prod 47(6):988–993 [PMID: 6549470]
  43. Harden GJ (2005) Flora of New South Wales, Vol. 1. University of NSW Press, Royal Botanic Gardens Sydney, Sydney
  44. Ouyang H et al (2000) Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am J Pathol 157(5):1623–1631 [PMID: 11073822]
  45. Schoumacher RA et al (1990) A cystic fibrosis pancreatic adenocarcinoma cell line. Proc Natl Acad Sci USA 87(10):4012–4016 [PMID: 1692630]
  46. Tan MH et al (1986) Characterization of a new primary human pancreatic tumor line. Cancer Invest 4(1):15–23 [PMID: 3754176]
  47. Yunis AA, Arimura GK, Russin DJ (1977) Human pancreatic carcinoma (MIA PaCa-2) in continuous culture: sensitivity to asparaginase. Int J Cancer 19(1):128–135 [PMID: 832918]
  48. Do QD et al (2014) Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal 22(3):296–302 [PMID: 28911418]
  49. Alothman M, Bhat R, Karim AA (2009) Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem 115(3):785–788
  50. Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10):7313 [PMID: 20966876]
  51. Xuan TD et al (2007) Efficacy of extracting solvents to chemical components of kava (Piper methysticum) roots. J Nat Med 62(2):188 [PMID: 18404321]
  52. Symonds EL, Konczak I, Fenech M (2013) The Australian fruit Illawarra plum (Podocarpus elatus Endl., Podocarpaceae) inhibits telomerase, increases histone deacetylase activity and decreases proliferation of colon cancer cells. Br J Nutr 109(12):2117–2125 [PMID: 23069328]
  53. Tan AC et al (2011) Native Australian fruit polyphenols inhibit cell viability and induce apoptosis in human cancer cell lines. Nutr Cancer 63(3):444–455 [PMID: 21391128]
  54. Varughese B, Tripathi J (2013) Phytochemical evaluation of different solvent extracts of Aegle marmelos fruit at different stages of its ripening. Adv Life Sci Technol 8:8–12
  55. Gami B (2016) Screening of methanol & acetone extract for antimicrobial activity of some medicinal plants species of Indian folklore. Int J Res Pharm Sci 2(1):69–75
  56. Zhu ZX et al (2010) [Effects of gemcitabine and pemetrexed on the proliferation of pancreatic cancer cell lines BXPC-3 and PANC-1 in vitro]. Nan Fang Yi Ke Da Xue Xue Bao 30(1):149–152 [PMID: 20118008]
  57. Cappella P et al (2001) Cell cycle effects of gemcitabine. Int J Cancer 93(3):401–408 [PMID: 11433406]
  58. Habiro A et al (2004) Involvement of p38 mitogen-activated protein kinase in gemcitabine-induced apoptosis in human pancreatic cancer cells. Biochem Biophys Res Commun 316(1):71–77 [PMID: 15003513]
  59. de S Cavalcante, L. and Monteiro G (2014) Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol 741:8–16
  60. Yong-Xian G et al (2016) Gemcitabine inhibits proliferation and induces apoptosis in human pancreatic cancer PANC-1 cells. J Cancer Res Ther 12(5):1–4 [PMID: 27721241]
  61. Hamed SS, Straubinger RM, Jusko WJ (2013) Pharmacodynamic modeling of cell cycle and apoptotic effects of gemcitabine on pancreatic adenocarcinoma cells. Cancer Chemother Pharmacol 72(3):553–563 [PMID: 23835677]
  62. Jaganathan R et al (2013) Potential therapeutic role of Tridham in human hepatocellular carcinoma cell line through induction of p53 independent apoptosis. BMC Complement Altern Med 13(1):323 [PMID: 24256980]
  63. Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134(12):3479S-3485S [PMID: 15570057]
  64. Rasoanaivo P et al (2011) Whole plant extracts versus single compounds for the treatment of malaria: synergy and positive interactions. Malaria J 10(Suppl 1):S4–S4
  65. Pan L et al (2012) Isolation, structure elucidation, and biological evaluation of 16,23-epoxycucurbitacin constituents from Eleaocarpus chinensis. J Nat Prod 75(3):444–452 [PMID: 22239601]
  66. Ito A et al (2002) Ellagic acid derivatives and cytotoxic cucurbitacins from Elaeocarpus mastersii. Phytochemistry 61(2):171–174 [PMID: 12169311]
  67. Alghasham AA (2013) Cucurbitacins—a promising target for cancer therapy. Int J Health Sci 7(1):77–89
  68. Zhang Z-R, Gao M-X, Yang K (2017) Cucurbitacin B inhibits cell proliferation and induces apoptosis in human osteosarcoma cells via modulation of the JAK2/STAT3 and MAPK pathways. Exp Ther Med 14(1):805–812 [PMID: 28673003]
  69. Sikander M et al (2016) Cucurbitacin D exhibits potent anti-cancer activity in cervical cancer. Sci Rep 6:36594 [PMID: 27824155]
  70. Blaskovich MA et al (2003) Discovery of JSI-124 (Cucurbitacin I), a selective janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res 63(6):1270–1279 [PMID: 12649187]
  71. Qi J et al (2015) JSI-124 (Cucurbitacin I) inhibits tumor angiogenesis of human breast cancer through reduction of STAT3 phosphorylation. Am J Chin Med 43(2):337–347 [PMID: 25787299]

MeSH Term

Antineoplastic Agents, Phytogenic
Apoptosis
Cell Cycle
Cell Line, Tumor
Cell Survival
Chromatography, High Pressure Liquid
Dose-Response Relationship, Drug
Elaeocarpaceae
Fruit
Humans
Pancreatic Neoplasms
Plant Extracts
Triterpenes

Chemicals

Antineoplastic Agents, Phytogenic
Plant Extracts
Triterpenes
cucurbitacin I

Word Cloud

Created with Highcharts 10.0.0ElaeocarpusreticulatusviabilitycellspancreaticcancerbioactivecompoundsextractBxPC-3Cucurbitacinanti-cancerstudyisolatefruitcrudesignificantlyapoptosisHPDEextractsTreatmentoptionsPCseverelylimitedduelatediagnosisearlymetastasisinadequacychemotherapyradiotherapycombataggressivebiologydiseaserecentyearsplant-derivedemergedsourcenovelagentsUsedtraditionalmedicineworldwidespeciesreportedanti-inflammatoryantioxidantpropertiesaimedidentifypotentialanti-PCSm50%acetonedecreasedfourcelllines≥ 10µg/mLinducedAnalysisHPLCidentifiedtriterpenoidlikelycomponentFurthermoretreatmentreducedresultscomparableconcentrationgemcitabineInterestinglyattemptsrevealedeffectivereducingPC-cellfractionatedprovidesinitialinsightconstituentsEfruitsreduceinducevitroApoptosisPancreatic

Similar Articles

Cited By