One-Pot Substitution of Aliphatic Alcohols Mediated by Sulfuryl Fluoride.

Jia Yi Mo, Maxim Epifanov, Jack W Hodgson, Rudy Dubois, Glenn M Sammis
Author Information
  1. Jia Yi Mo: Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British, Columbia, V6T 1Z1, Canada.
  2. Maxim Epifanov: Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British, Columbia, V6T 1Z1, Canada.
  3. Jack W Hodgson: Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British, Columbia, V6T 1Z1, Canada.
  4. Rudy Dubois: Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British, Columbia, V6T 1Z1, Canada.
  5. Glenn M Sammis: Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British, Columbia, V6T 1Z1, Canada. ORCID

Abstract

The Mitsunobu reaction is a powerful transformation for the one-pot activation and substitution of aliphatic alcohols. Significant efforts have focused on modifying the classic conditions to overcome problems associated with purification from phosphine-based byproducts. Herein, we report a phosphine free method for alcohol activation and substitution that is mediated by sulfuryl fluoride. This new method is effective for a wide range of primary alcohols using phthalimide, di-tert-butyl-iminodicarboxylate, and aromatic thiol nucleophiles in 74 % average yield. Activated carbon nucleophiles and a deactivated phenol were also effective for this reaction in good yields. Secondary alcohols were also successful substrates using aryl thiols, affording the corresponding sulfides in 56 % average yield with enantiomeric ratios up to 99:1. This new protocol has a distinct synthetic advantage over many existing phosphine-based methods as the byproducts are readily separable. This feature was exploited in several examples that did not require chromatography for purification. Furthermore, the mild reaction conditions enabled further in situ derivatization for the one-pot conversion of alcohols to amines or sulfones. This method also provides a boarder nucleophile scope compared to existing phosphine-free methods.

Keywords

References

  1.  
  2. O. Mitsunobu, M. Yamada, Bull. Chem. Soc. Jpn. 1967, 40, 2380-2382;
  3. O. Mitsunobu, M. Yamada, T. Mukaiyama, Bull. Chem. Soc. Jpn. 1967, 40, 935-939.
  4. For representative reviews, see:
  5. K. C. Kumara Swamy, N. N. Bhuvan Kumar, E. Balaraman, K. V. P. Pavan Kumar, Chem. Rev. 2009, 109, 2551-2265;
  6. J. An, R. M. Denton, T. H. Lambert, E. D. Nacsa, Org. Biomol. Chem. 2014, 12, 2993;
  7. S. Fletcher, Org. Chem. Front. 2015, 2, 739-752;
  8. R. H. Beddoe, H. F. Sneddon, R. M. Denton, Org. Biomol. Chem. 2018, 16, 7774-7781;
  9. P. H. Huy, Eur. J. Org. Chem. 2020, 10-27.
  10. See: S. Dandapani, D. P. Curran, Chem. Eur. J. 2004, 10, 3130-3138 and references therein.
  11.  
  12. For a representative review, see: R. Dembinski, Eur. J. Org. Chem. 2004, 2763-2772;
  13. For a recent example of organocatalytic Mitsunobu using a PV reagent, see: R. H. Beddoe, K. G. Andrews, V. Magné, J. D. Cuthbertson, J. Saska, A. L. Shannon-Little, S. E. Shanahan, H. F. Sneddon, R. M. Denton, Science 2019, 365, 910-914;
  14. For an example of preparing alkyl azides with diphenylphosphoryl azide, see: A. S. Thompson, G. R. Humphrey, A. M. DeMarco, D. J. Mathre, E. J. J. Grabowski, J. Org. Chem. 1993, 58, 5886-5888.
  15. For representative examples, see:
  16. A. G. M. Barrett, D. C. Braddock, R. A. James, N. Koike, P. A. Procopiou, J. Org. Chem. 1998, 63, 6273-6280;
  17. Y. Kawano, N. Kaneko, T. Mukaiyama, Chem. Lett. 2005, 34, 1612-1613.
  18. For the use of catalytic Vilsmeier reagent, see: P. H. Huy, S. Motsch, S. M. Kappler, Angew. Chem. Int. Ed. 2016, 55, 10145-10149;
  19. Angew. Chem. 2016, 128, 10300-10304;
  20. P. H. Huy, I. Filbrich, Chem. Eur. J. 2018, 24, 7410-7416.
  21. E. D. Nacsa, T. H. Lambert, Org. Lett. 2013, 15, 38-41.
  22.  
  23. A. Bunrit, C. Dahlstrand, S. K. Olsson, P. Srifa, G. Huang, A. Orthaber, P. J. R. Sjöberg, S. Biswas, F. Himo, J. S. M. Samec, J. Am. Chem. Soc. 2015, 137, 4646-4649;
  24. P. T. Marcyk, L. R. Jefferies, D. I. AbuSalim, M. Pink, M.-H. Baik, S. P. Cook, Angew. Chem. Int. Ed. 2019, 58, 1727-1731;
  25. Angew. Chem. 2019, 131, 1741-1745.
  26. For representative examples, see:
  27. J. Dong, L. Krasnova, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2014, 53, 9430-9448;
  28. Angew. Chem. 2014, 126, 9584-9603;
  29. P. S. Hanley, M. S. Ober, A. L. Krasovskiy, G. T. Whiteker, W. J. Kruper, ACS Catal. 2015, 5, 5041-5046;
  30. M. K. Nielsen, C. R. Ugaz, W. Li, A. G. Doyle, J. Am. Chem. Soc. 2015, 137, 9571-9574;
  31. S. D. Schimler, M. A. Cismesia, P. S. Hanley, R. D. J. Froese, M. J. Jansma, D. C. Bland, M. S. Sanford, J. Am. Chem. Soc. 2017, 139, 1452-1455;
  32. P. R. Melvin, D. M. Ferguson, S. D. Schimler, D. C. Bland, M. S. Sanford, Org. Lett. 2019, 21, 1350-1353.
  33.  
  34. G.-F. Zha, W.-Y. Fang, Y.-G. Li, J. Leng, X. Chen, H.-L. Qin, J. Am. Chem. Soc. 2018, 140, 17666-17673;
  35. A. Ishii, M. Yasumoto, K. Ueda, US Pat. 2011/0251403 A1, Central Glass Company, Ltd., 2011;
  36. W.-Y. Fang, G.-F. Zha, H.-L. Qin, Org. Lett. 2019, 21, 8657-8661.
  37. A. Ishii, T. Yamazaki, M. Yasumoto, US Pat. 8,426,645B2, Central Glass Company, Ltd., 2013.
  38.  
  39. M. Epifanov, P. J. Foth, F. Gu, C. Barrillon, S. S. Kanani, C. S. Higman, J. E. Hein, G. M. Sammis, J. Am. Chem. Soc. 2018, 140, 16464-16468;
  40. P. J. Foth, F. Gu, T. G. Bolduc, S. S. Kanani, G. M. Sammis, Chem. Sci. 2019, 10, 10331-10335.
  41. For a study on the effect of halides alpha to the electrophilic center of SN2 reactions, see: J. Hine, W. H. Brader, Jr., J. Am. Chem. Soc. 1953, 75, 3964-3966.
  42. The same base that was successfully employed in amine 1,1-dihydrofluoroalkylation (ref. [11a]).
  43. See the Supporting Information for further details on solvent optimization.
  44. See the Supporting Information for further details on base optimization.
  45. Sharpless and co-workers proposed that catalytic amount of DBU can facilitate the nucleophilic attack on the S-F bond in Ar-OSO2F through the fluoride-proton interaction. See: J. Dong, K. B. Sharpless, L. Kwisnek, J. S. Oakdale, V. V. Fokin, Angew. Chem. Int. Ed. 2014, 53, 9466-9470;
  46. Angew. Chem. 2014, 126, 9620-9624.
  47. For representative examples of nucleophilic catalysis by DBU, see:
  48. W.-C. Shieh, S. Dell, O. Repič, J. Org. Chem. 2002, 67, 2188-2191;
  49. V. Gembus, F. Marsais, V. Levacher, Synlett 2008, 1463-1466;
  50. J. E. Taylor, S. D. Bull, J. M. J. Williams, Chem. Soc. Rev. 2012, 41, 2109-2121.
  51. For the reaction of phthalimide with a representative secondary alcohol, see the Supporting Information (page S28).
  52. Predicted pKa values from SciFinder®: HNPhth pKa=10.39±0.20, HNBoc2 pKa=8.25±0.46, and PhSO2NHOMe pKa=6.24±0.40.
  53. More nucleophilic thiols can competitively react with sulfuryl fluoride, see ref. [11b] for details.
  54. These products can be desulfonylated using numerous literature methods. For a representative review, see: D. A. Alonso, C. N. Ájera, Organic Reactions (Ed.: John Wiley & Sons, Inc.), Wiley, Hoboken, 2009, pp. 367-656.
  55. Purification was achieved using a simple diethyl ether extraction followed by a hexane wash.
  56. Both sulfones are commonly used as precursors for Julia olefination:
  57. J. B. Baudin, G. Hareau, S. A. Julia, O. Ruel, Tetrahedron Lett. 1991, 32, 1175-1178;
  58. P. R. Blakemore, W. J. Cole, P. J. Kocienski, A. Morley, Synlett 1998, 26-28.
  59. Compound 25 a can also be efficiently converted to alkyl sulfones and sulfonamides, see: J. J. Day, D. L. Neill, S. Xu, M. Xian, Org. Lett. 2017, 19, 3819-3822.

Grants

  1. 2015-RGPIN-05856/Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Word Cloud

Created with Highcharts 10.0.0alcoholsreactionsubstitutionmethodalsoone-potactivationconditionspurificationphosphine-basedbyproductssulfurylfluorideneweffectiveusingnucleophilesaverageyieldexistingmethodsaminesMitsunobupowerfultransformationaliphaticSignificanteffortsfocusedmodifyingclassicovercomeproblemsassociatedHereinreportphosphinefreealcoholmediatedwiderangeprimaryphthalimidedi-tert-butyl-iminodicarboxylatearomaticthiol74 %ActivatedcarbondeactivatedphenolgoodyieldsSecondarysuccessfulsubstratesarylthiolsaffordingcorrespondingsulfides56 %enantiomericratios99:1protocoldistinctsyntheticadvantagemanyreadilyseparablefeatureexploitedseveralexamplesrequirechromatographyFurthermoremildenabledsituderivatizationconversionsulfonesprovidesboardernucleophilescopecomparedphosphine-freeOne-PotSubstitutionAliphaticAlcoholsMediatedSulfurylFluoridealkylfluorosulfatealkylationnucleophilic

Similar Articles

Cited By