Acclimation of leaf respiration consistent with optimal photosynthetic capacity.

Han Wang, Owen K Atkin, Trevor F Keenan, Nicholas G Smith, Ian J Wright, Keith J Bloomfield, Jens Kattge, Peter B Reich, I Colin Prentice
Author Information
  1. Han Wang: Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, China. ORCID
  2. Owen K Atkin: Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia. ORCID
  3. Trevor F Keenan: Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USA.
  4. Nicholas G Smith: Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA. ORCID
  5. Ian J Wright: Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia.
  6. Keith J Bloomfield: Department of Life Sciences, Imperial College London, Ascot, UK.
  7. Jens Kattge: Max Planck Institute for Biogeochemistry, Jena, Germany. ORCID
  8. Peter B Reich: Department of Forest Resources, University of Minnesota, St. Paul, MN, USA.
  9. I Colin Prentice: Ministry of Education Key Laboratory for Earth System Modelling, Department of Earth System Science, Tsinghua University, Beijing, China.

Abstract

Plant respiration is an important contributor to the proposed positive global carbon-cycle feedback to climate change. However, as a major component, leaf mitochondrial ('dark') respiration (R ) differs among species adapted to contrasting environments and is known to acclimate to sustained changes in temperature. No accepted theory explains these phenomena or predicts its magnitude. Here we propose that the acclimation of R follows an optimal behaviour related to the need to maintain long-term average photosynthetic capacity (V ) so that available environmental resources can be most efficiently used for photosynthesis. To test this hypothesis, we extend photosynthetic co-ordination theory to predict the acclimation of R to growth temperature via a link to V , and compare predictions to a global set of measurements from 112 sites spanning all terrestrial biomes. This extended co-ordination theory predicts that field-measured R and V accessed at growth temperature (R and V ) should increase by 3.7% and 5.5% per degree increase in growth temperature. These acclimated responses to growth temperature are less steep than the corresponding instantaneous responses, which increase 8.1% and 9.9% per degree of measurement temperature for R and V respectively. Data-fitted responses proof indistinguishable from the values predicted by our theory, and smaller than the instantaneous responses. Theory and data are also shown to agree that the basal rates of both R and V assessed at 25°C (R and V ) decline by ~4.4% per degree increase in growth temperature. These results provide a parsimonious general theory for R acclimation to temperature that is simpler-and potentially more reliable-than the plant functional type-based leaf respiration schemes currently employed in most ecosystem and land-surface models.

Keywords

References

  1. Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165, 351-372. https://doi.org/10.1111/j.1469-8137.2004.01224.x
  2. Albert, L. P., Wu, J., Prohaska, N., de Camargo, P. B., Huxman, T. E., Tribuzy, E. S., … Saleska, S. R. (2018). Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest. New Phytologist, 219, 870-884. https://doi.org/10.1111/nph.15056
  3. Amthor, J. S. (2000). The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Annals of Botany, 86, 1-20. https://doi.org/10.1006/anbo.2000.1175
  4. Atkin, O. K., Bloomfield, K. J., Reich, P. B., Tjoelker, M. G., Asner, G. P., Bonal, D., … Zaragoza-Castells, J. (2015). Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist, 206, 614-636. https://doi.org/10.1111/nph.13253
  5. Atkin, O. K., Bruhn, D., & Tjoelker, M. G. (2005). Response of plant respiration to changes in temperature: Mechanisms and consequences of variations in q10; values and acclimation. In H. Lambers (Ed.), Plant respiration, advances in photosynthesis and respiration (pp. 95-135). Dordrecht, The Netherlands: Springer.
  6. Atkin, O. K., Millar, A. H., Gardeström, P., & Day, D. A. (2000). Photosynthesis, carbohydrate metabolism and respiration in leaves of higher plants. In R. C. Leegood, T. D. Sharkey, & S. von Caemmerer (Eds.), Photosynthesis (pp. 153-175). Dordrecht, The Netherlands: Springer.
  7. Atkin, O. K., Scheurwater, I., & Pons, T. L. (2007). Respiration as a percentage of daily photosynthesis in whole plants is homeostatic at moderate, but not high, growth temperatures. New Phytologist, 174, 367-380. https://doi.org/10.1111/j.1469-8137.2007.02011.x
  8. Atkin, O. K., & Tjoelker, M. G. (2003). Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science, 8, 343-351. https://doi.org/10.1016/S1360-1385(03)00136-5
  9. Bernacchi, C., Singsaas, E., Pimentel, C., Portis, A. Jr., & Long, S. (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell & Environment, 24, 253-259. https://doi.org/10.1111/j.1365-3040.2001.00668.x
  10. Bouma, T. J. (2005). Understanding plant respiration: Separating respiratory components versus a process-based approach. In H. Lambers & M. Ribas-Carbo (Eds.), Plant respiration (pp. 177-194). Dordrecht, The Netherlands: Springer.
  11. Burnett, A. C., Davidson, K. J., Serbin, S. P., & Rogers, A. (2019). The “one-point method” for estimating maximum carboxylation capacity of photosynthesis: A cautionary tale. Plant, Cell & Environment, 42, 2472-2481. https://doi.org/10.1111/pce.13574
  12. Cannell, M., & Thornley, J. (2000). Modelling the components of plant respiration: Some guiding principles. Annals of Botany, 85, 45-54. https://doi.org/10.1006/anbo.1999.0996
  13. Chen, J.-L., Reynolds, J. F., Harley, P. C., & Tenhunen, J. D. (1993). Coordination theory of leaf nitrogen distribution in a canopy. Oecologia, 93, 63-69. https://doi.org/10.1007/BF00321192
  14. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., …Jones, C. (2014). Carbon and other biogeochemical cycles. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 465-570.
  15. Collatz, G. J., Ball, J. T., Grivet, C., & Berry, J. A. (1991). Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54, 107-136. https://doi.org/10.1016/0168-1923(91)90002-8
  16. Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., & Totterdell, I. J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184-187. https://doi.org/10.1038/35041539
  17. Davis, T. W., Prentice, I. C., Stocker, B. D., Thomas, R., Whitley, R., Wang, H., … Cramer, W. (2017). Simple process-led algorithms for simulating habitats (SPLASH v. 1.0): Robust indices of radiation, evapotranspiration and plant-available moisture. Geoscientific Model Development, 10, 689-708. https://doi.org/10.5194/gmd-10-689-2017
  18. De Kauwe, M. G., Lin, Y.-S., Wright, I. J., Medlyn, B. E., Crous, K. Y., Ellsworth, D. S., … Domingues, T. F. (2016). A test of the ‘one-point method’ for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis. New Phytologist, 210, 1130-1144. https://doi.org/10.1111/nph.13815
  19. Dong, N., Prentice, I. C., Evans, B. J., Caddy-Retalic, S., Lowe, A. J., & Wright, I. J. (2017). Leaf nitrogen from first principles: Field evidence for adaptive variation with climate. Biogeosciences, 14, 481-495. https://doi.org/10.5194/bg-14-481-2017
  20. Dong, N., Prentice, I. C., Harrison, S. P., Song, Q. H., & Zhang, Y. P. (2017). Biophysical homoeostasis of leaf temperature: A neglected process for vegetation and land-surface modelling. Global Ecology and Biogeography, 26, 998-1007. https://doi.org/10.1111/geb.12614
  21. Farquhar, G. D., Von Caemmerer, S. V., & Berry, J. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90. https://doi.org/10.1007/BF00386231
  22. Galmés, J., Hermida-Carrera, C., Laanisto, L., & Niinemets, Ü. (2016). A compendium of temperature responses of Rubisco kinetic traits: Variability among and within photosynthetic groups and impacts on photosynthesis modeling. Journal of Experimental Botany, 67, 5067-5091. https://doi.org/10.1093/jxb/erw267
  23. Galmés, J., Kapralov, M., Copolovici, L., Hermida-Carrera, C., & Niinemets, Ü. (2015). Temperature responses of the Rubisco maximum carboxylase activity across domains of life: Phylogenetic signals, trade-offs, and importance for carbon gain. Photosynthesis Research, 123, 183-201. https://doi.org/10.1007/s11120-014-0067-8
  24. Gobron, N., Pinty, B., Taberner, M., Mélin, F., Verstraete, M. M., & Widlowski, J. L. (2006). Monitoring the photosynthetic activity of vegetation from remote sensing data. Advances in Space Research, 38, 2196-2202. https://doi.org/10.1016/j.asr.2003.07.079
  25. Harrison, S. P., Prentice, I. C., Barboni, D., Kohfeld, K. E., Ni, J., & Sutra, J. P. (2010). Ecophysiological and bioclimatic foundations for a global plant functional classification. Journal of Vegetation Science, 21, 300-317. https://doi.org/10.1111/j.1654-1103.2009.01144.x
  26. Haxeltine, A., & Prentice, I. C. (1996). A general model for the light-use efficiency of primary production. Functional Ecology, 10, 551-561. https://doi.org/10.2307/2390165
  27. Heskel, M. A., O'Sullivan, O. S., Reich, P. B., Tjoelker, M. G., Weerasinghe, L. K., Penillard, A., … Atkin, O. K. (2016). Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proceedings of the National Academy of Sciences of the United States of America, 113, 3832-3837. https://doi.org/10.1073/pnas.1520282113
  28. Hoefnagel, M., Atkin, O., & Wiskich, J. (1998). Interdependence between chloroplasts and mitochondria in the light and the dark. Biochimica et Biophysica Acta-Bioenergetics, 1366, 235-255. https://doi.org/10.1016/S0005-2728(98)00126-1
  29. Huntingford, C., Atkin, O. K., Martinez-de la Torre, A., Mercado, L. M., Heskel, M. A., Harper, A. B., … Butler, E. E. (2017). Implications of improved representation of plant respiration in a changing climate. Nature Communications, 8, 1602. https://doi.org/10.1038/s41467-017-01774-z
  30. Huntingford, C., Zelazowski, P., Galbraith, D., Mercado, L. M., Sitch, S., Fisher, R., … Cox, P. M. (2013). Simulated resilience of tropical rainforests to CO2-induced climate change. Nature Geoscience, 6, 268. https://doi.org/10.1038/ngeo1741
  31. Jenny, H. (1994). Factors of soil formation: A system of quantitative pedology. North Chelmsford, MA: Courier Corporation.
  32. Kattge, J., & Knorr, W. (2007). Temperature acclimation in a biochemical model of photosynthesis: A reanalysis of data from 36 species. Plant, Cell & Environment, 30, 1176-1190. https://doi.org/10.1111/j.1365-3040.2007.01690.x
  33. Keenan, T. F., Prentice, I. C., Canadell, J. G., Williams, C. A., Wang, H., Raupach, M., & Collatz, G. J. (2016). Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nature Communications, 7, 13428. https://doi.org/10.1038/ncomms13428
  34. Lebauer, D. S., & Treseder, K. K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379. https://doi.org/10.1890/06-2057.1
  35. Luo, Y., Su, B. O., Currie, W. S., Dukes, J. S., Finzi, A., Hartwig, U., … Pataki, D. E. (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. AIBS Bulletin, 54, 731-739. https://doi.org/10.1641/0006-3568(2004)054[0731:pnloer]2.0.co;2
  36. Maire, V., Martre, P., Kattge, J., Gastal, F., Esser, G., Fontaine, S., & Soussana, J.-F. (2012). The coordination of leaf photosynthesis links C and N fluxes in C3 plant species. PLoS ONE, 7, e38345. https://doi.org/10.1371/journal.pone.0038345
  37. New, M., Hulme, M., & Jones, P. (2000). Representing twentieth-century space-time climate variability. Part II: Development of 1901-96 monthly grids of terrestrial surface climate. Journal of Climate, 13, 2217-2238. https://doi.org/10.1175/1520-0442(2000)013<2217:RTCSTC>2.0.CO;2
  38. Niinemets, Ü., Keenan, T. F., & Hallik, L. (2015). A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytologist, 205(3), 973-993.
  39. Noguchi, K., & Yoshida, K. (2008). Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion, 8, 87-99. https://doi.org/10.1016/j.mito.2007.09.003
  40. O'Leary, B. M., Asao, S., Millar, A. H., & Atkin, O. K. (2019). Core principles which explain variation in respiration across biological scales. New Phytologist, 222(2), 670-686. https://doi.org/10.1111/nph.15576.
  41. Onoda, Y., Wright, I. J., Evans, J. R., Hikosaka, K., Kitajima, K., Niinemets, Ü., … Westoby, M. (2017). Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 214, 1447-1463. https://doi.org/10.1111/nph.14496
  42. Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50. https://doi.org/10.1111/j.1469-8137.2011.03952.x
  43. Prentice, I. C., Dong, N., Gleason, S. M., Maire, V., & Wright, I. J. (2014). Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology. Ecology Letters, 17, 82-91. https://doi.org/10.1111/ele.12211
  44. Prentice, I. C., Liang, X., Medlyn, B. E., & Wang, Y.-P. (2015). Reliable, robust and realistic: The three R's of next-generation land-surface modelling. Atmospheric Chemistry and Physics, 15, 5987-6005. https://doi.org/10.5194/acp-15-5987-2015
  45. Quebbeman, J. A., & Ramirez, J. A. (2016). Optimal allocation of leaf-level nitrogen: Implications for covariation of Vcmax and Jmax and photosynthetic downregulation. Journal of Geophysical Research: Biogeosciences, 121, 2464-2475. https://doi.org/10.1002/2016jg003473
  46. Reich, P. B., Sendall, K. M., Stefanski, A., Wei, X., Rich, R. L., & Montgomery, R. A. (2016). Boreal and temperate trees show strong acclimation of respiration to warming. Nature, 531, 633-636. https://doi.org/10.1038/nature17142
  47. Rogers, A. (2014). The use and misuse of Vc, max in Earth System Models. Photosynthesis Research, 119, 15-29. https://doi.org/10.1007/s11120-013-9818-1
  48. Scafaro, A. P., Xiang, S., Long, B. M., Bahar, N. H. A., Weerasinghe, L. K., Creek, D., … Atkin, O. K. (2017). Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: The importance of altered Rubisco content. Global Change Biology, 23, 2783-2800. https://doi.org/10.1111/gcb.13566
  49. Sinsabaugh, R. L., & Follstad Shah, J. J. (2012). Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology, Evolution, and Systematics, 43, 313-343. https://doi.org/10.1146/annurev-ecolsys-071112-124414
  50. Slot, M., & Kitajima, K. (2015). General patterns of acclimation of leaf respiration to elevated temperatures across biomes and plant types. Oecologia, 177, 885-900. https://doi.org/10.1007/s00442-014-3159-4
  51. Smith, N. G., & Dukes, J. S. (2017). LCE: Leaf carbon exchange data set for tropical, temperate, and boreal species of North and Central America. Ecology, 98, 2978-2978. https://doi.org/10.1002/ecy.1992
  52. Smith, N. G., & Dukes, J. S. (2017). Short-term acclimation to warmer temperatures accelerates leaf carbon exchange processes across plant types. Global Change Biology, 23, 4840-4853. https://doi.org/10.1111/gcb.13735
  53. Smith, N. G., & Dukes, J. S. (2018). Drivers of leaf carbon exchange capacity across biomes at the continental scale. Ecology, 99, 1610-1620. https://doi.org/10.1002/ecy.2370
  54. Smith, N. G., Keenan, T. F., Colin Prentice, I., Wang, H., Wright, I. J., Niinemets, Ü., … Zhou, S.-X. (2019). Global photosynthetic capacity is optimized to the environment. Ecology Letters, 22, 506-517. https://doi.org/10.1111/ele.13210
  55. Smith, N. G., Keenan, T. F., Colin Prentice, I., Wang, H., Wright, I. J., Niinemets, Ü., … Kattge, J. (2019). Global photosynthetic capacity is optimized to the environment. Ecology Letters, 22, 506-517.
  56. Smith, N. G., Malyshev, S. L., Shevliakova, E., Kattge, J., & Dukes, J. S. (2016). Foliar temperature acclimation reduces simulated carbon sensitivity to climate. Nature Climate Change, 6, 407-411. https://doi.org/10.1038/nclimate2878
  57. Tcherkez, G., Boex-Fontvieille, E., Mahé, A., & Hodges, M. (2012). Respiratory carbon fluxes in leaves. Current Opinion in Plant Biology, 15, 308-314. https://doi.org/10.1016/j.pbi.2011.12.003
  58. Tcherkez, G., Gauthier, P., Buckley, T. N., Busch, F. A., Barbour, M. M., Bruhn, D., … Way, D. (2017). Leaf day respiration: Low CO2 flux but high significance for metabolism and carbon balance. New Phytologist, 216, 986-1001. https://doi.org/10.1111/nph.14816
  59. Terrer, C., Vicca, S., Stocker, B. D., Hungate, B. A., Phillips, R. P., Reich, P. B., … Prentice, I. C. (2018). Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. New Phytologist, 217, 507-522. https://doi.org/10.1111/nph.14872
  60. Togashi, F. H., Prentice, I. C., Atkin, O. K., Macfarlane, C., Prober, S. M., Bloomfield, K. J., & Evans, B. J. (2018). Thermal acclimation of leaf photosynthetic traits in an evergreen woodland, consistent with the co-ordination hypothesis. Biogeosciences, 15, 3461-3474. https://doi.org/10.5194/bg-15-3461-2018
  61. Vanderwel, M. C., Slot, M., Lichstein, J. W., Reich, P. B., Kattge, J., Atkin, O. K., … Kitajima, K. (2015). Global convergence in leaf respiration from estimates of thermal acclimation across time and space. New Phytologist, 207, 1026-1037. https://doi.org/10.1111/nph.13417
  62. Wang, H., Prentice, I., & Davis, T. (2014). Biophsyical constraints on gross primary production by the terrestrial biosphere. Biogeosciences, 11, 5987-6001. https://doi.org/10.5194/bg-11-5987-2014
  63. Wang, H., Prentice, I. C., Davis, T. W., Keenan, T. F., Wright, I. J., & Peng, C. (2017). Photosynthetic responses to altitude: An explanation based on optimality principles. New Phytologist, 213, 976-982. https://doi.org/10.1111/nph.14332
  64. Wang, H., Prentice, I. C., Keenan, T. F., Davis, T. W., Wright, I. J., Cornwell, W. K., … Peng, C. (2017). Towards a universal model for carbon dioxide uptake by plants. Nature Plants, 3, 734-741. https://doi.org/10.1038/s41477-017-0006-8
  65. Wright, I. J., Reich, P. B., Atkin, O. K., Lusk, C. H., Tjoelker, M. G., & Mark, W. (2006). Irradiance, temperature and rainfall influence leaf dark respiration in woody plants: Evidence from comparisons across 20 sites. New Phytologist, 169, 309-319. https://doi.org/10.1111/j.1469-8137.2005.01590.x
  66. Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. https://doi.org/10.1038/nature02403
  67. Zhu, S.-D., Chen, Y.-J., Ye, Q., He, P.-C., Liu, H., Li, R.-H., … Cao, K.-F. (2018). Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits. Tree Physiology, 38, 658-663. https://doi.org/10.1093/treephys/tpy013

Grants

  1. 31971495/National Natural Science Foundation of China
  2. 787203/H2020 European Research Council
  3. 2018YFA0605400/National Key Laboratory of Research and Development Program of China
  4. GDW20181100161/Tsinghua University
  5. DP130101252/Australian Research Council
  6. CE140100008/Australian Research Council
  7. DP170103410/Australian Research Council
  8. /Laboratory Directed Research and Development
  9. /Lawrence Berkeley National Laboratory
  10. /Texas Tech University

Word Cloud

Created with Highcharts 10.0.0RtemperatureVleaftheorygrowthrespirationacclimationincreaseperresponsesphotosyntheticcapacityco-ordinationdegreeglobalclimatechangepredictsoptimalphotosynthesisinstantaneousland-surfacecyclenitrogenPlantimportantcontributorproposedpositivecarbon-cyclefeedbackHowevermajorcomponentmitochondrial'dark'differsamongspeciesadaptedcontrastingenvironmentsknownacclimatesustainedchangesacceptedexplainsphenomenamagnitudeproposefollowsbehaviourrelatedneedmaintainlong-termaverageavailableenvironmentalresourcescanefficientlyusedtesthypothesisextendpredictvialinkcomparepredictionssetmeasurements112sitesspanningterrestrialbiomesextendedfield-measuredaccessed should37%55%acclimatedlesssteepcorresponding81%99%measurementrespectivelyData-fittedproofindistinguishablevaluespredictedsmallerTheorydataalsoshownagreebasalratesassessed25°C decline~44%resultsprovideparsimoniousgeneralsimpler-andpotentiallyreliable-thanplantfunctionaltype-basedschemescurrentlyemployedecosystemmodelsAcclimationconsistentcarboncarboxylationVcmaxmodelmassareaoptimality

Similar Articles

Cited By