Patterns of mosquito and arbovirus community composition and ecological indexes of arboviral risk in the northeast United States.

Joseph R McMillan, Philip M Armstrong, Theodore G Andreadis
Author Information
  1. Joseph R McMillan: Environmental Sciences, Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America. ORCID
  2. Philip M Armstrong: Environmental Sciences, Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America.
  3. Theodore G Andreadis: Environmental Sciences, Center for Vector Biology & Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America.

Abstract

BACKGROUND: In the northeast United States (U.S.), mosquitoes transmit a number of arboviruses, including eastern equine encephalitis, Jamestown Canyon, and West Nile that pose an annual threat to human and animal health. Local transmission of each arbovirus may be driven by the involvement of multiple mosquito species; however, the specificity of these vector-virus associations has not been fully quantified.
METHODOLOGY: We used long-term surveillance data consistently collected over 18 years to evaluate mosquito and arbovirus community composition in the State of Connecticut (CT) based on land cover classifications and mosquito species-specific natural histories using community ecology approaches available in the R package VEGAN. We then used binomial-error generalized linear mixed effects models to quantify species-specific trends in arbovirus detections.
PRIMARY RESULTS: The composition of mosquito communities throughout CT varied more among sites than among years, with variation in mosquito community composition among sites explained mostly by a forested-to-developed-land-cover gradient. Arboviral communities varied equally among sites and years, and only developed and forested wetland land cover classifications were associated with the composition of arbovirus detections among sites. Overall, the avian host arboviruses, mainly West Nile and eastern equine encephalitis, displayed the most specific associations among mosquito species and sites, while in contrast, the mammalian host arboviruses (including Cache Valley, Jamestown Canyon, and Potosi) associated with a more diverse mix of mosquito species and were widely distributed throughout CT.
CONCLUSIONS: We find that avian arboviruses act as vector specialists infecting a few key mosquito species that associate with discrete habitats, while mammalian arboviruses are largely vector generalists infecting a wide diversity of mosquito species and habitats in the region. These distinctions have important implications for the design and implementation of mosquito and arbovirus surveillance programs as well as mosquito control efforts.

Associated Data

Dryad | 10.5061/dryad.rjdfn2z6x

References

  1. Am J Trop Med Hyg. 2019 Feb;100(2):445-451 [PMID: 30526745]
  2. PLoS One. 2012;7(3):e34127 [PMID: 22457819]
  3. Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):14290-4 [PMID: 26578774]
  4. Vector Borne Zoonotic Dis. 2008 Apr;8(2):175-88 [PMID: 18386967]
  5. Am J Trop Med Hyg. 1987 Nov;37(3 Suppl):40S-59S [PMID: 3318523]
  6. Nature. 2007 Jun 7;447(7145):710-3 [PMID: 17507930]
  7. J Med Entomol. 2006 Sep;43(5):1088-93 [PMID: 17017250]
  8. Nature. 1964 Dec 19;204:1173-5 [PMID: 14268587]
  9. MMWR Morb Mortal Wkly Rep. 2018 Oct 19;67(41):1137-1142 [PMID: 30335737]
  10. Science. 1999 Dec 17;286(5448):2331-3 [PMID: 10600741]
  11. Trans R Soc Trop Med Hyg. 2005 Apr;99(4):252-60 [PMID: 15708384]
  12. J Med Entomol. 2019 Jan 8;56(1):222-232 [PMID: 30295776]
  13. Vector Borne Zoonotic Dis. 2014 Oct;14(10):763-73 [PMID: 25325321]
  14. J Med Entomol. 2014 Mar;51(2):297-313 [PMID: 24724278]
  15. PLoS Negl Trop Dis. 2012;6(11):e1928 [PMID: 23209867]
  16. MMWR Morb Mortal Wkly Rep. 2016 Sep 30;65(38):1032-8 [PMID: 27684886]
  17. Parasit Vectors. 2014 Jun 19;7:276 [PMID: 24946878]
  18. Parasitology. 2016 Jun;143(7):874-879 [PMID: 26206418]
  19. J Med Entomol. 2005 Jan;42(1):57-62 [PMID: 15691009]
  20. PLoS Negl Trop Dis. 2019 Mar 28;13(3):e0007213 [PMID: 30921321]
  21. J Med Entomol. 2008 Nov;45(6):1143-51 [PMID: 19058640]
  22. MMWR Morb Mortal Wkly Rep. 2018 May 04;67(17):496-501 [PMID: 29723166]
  23. Am Nat. 2013 Jan;181(1):1-11 [PMID: 23234841]
  24. Malar J. 2004 Jun 04;3:13 [PMID: 15180900]
  25. PLoS Negl Trop Dis. 2017 May 18;11(5):e0005623 [PMID: 28545111]
  26. J Vis Exp. 2011 Jun 09;(52): [PMID: 21694689]
  27. Am J Trop Med Hyg. 2014 Oct;91(4):677-684 [PMID: 25092814]
  28. J Med Entomol. 1998 May;35(3):296-302 [PMID: 9615549]
  29. PLoS Biol. 2004 Nov;2(11):e368 [PMID: 15510228]
  30. Vector Borne Zoonotic Dis. 2013 May;13(5):312-23 [PMID: 23473221]
  31. Vector Borne Zoonotic Dis. 2001 Winter;1(4):299-315 [PMID: 12653129]
  32. J Am Mosq Control Assoc. 2012 Dec;28(4 Suppl):137-51 [PMID: 23401954]
  33. Emerg Infect Dis. 2006 Mar;12(3):468-74 [PMID: 16704786]
  34. N Engl J Med. 2013 May 2;368(18):1670-3 [PMID: 23635048]
  35. Int Health. 2015 Mar;7(2):121-9 [PMID: 25733562]

Grants

  1. U01 CK000509/NCEZID CDC HHS

MeSH Term

Animals
Arboviruses
Connecticut
Culicidae
Female
Host-Pathogen Interactions
Humans
Mosquito Vectors
Retrospective Studies

Word Cloud

Created with Highcharts 10.0.0mosquitoarbovirusamongarbovirusesspeciescompositionsitescommunityyearsCTnortheastUnitedStatesincludingeasternequineencephalitisJamestownCanyonWestNileassociationsusedsurveillancelandcoverclassificationsspecies-specificdetectionscommunitiesthroughoutvariedassociatedavianhostmammalianvectorinfectinghabitatsBACKGROUND:USmosquitoestransmitnumberposeannualthreathumananimalhealthLocaltransmissionmaydriveninvolvementmultiplehoweverspecificityvector-virusfullyquantifiedMETHODOLOGY:long-termdataconsistentlycollected18evaluateStateConnecticutbasednaturalhistoriesusingecologyapproachesavailableRpackageVEGANbinomial-errorgeneralizedlinearmixedeffectsmodelsquantifytrendsPRIMARYRESULTS:variationexplainedmostlyforested-to-developed-land-covergradientArboviralequallydevelopedforestedwetlandOverallmainlydisplayedspecificcontrastCacheValleyPotosidiversemixwidelydistributedCONCLUSIONS:findactspecialistskeyassociatediscretelargelygeneralistswidediversityregiondistinctionsimportantimplicationsdesignimplementationprogramswellcontroleffortsPatternsecologicalindexesarboviralrisk

Similar Articles

Cited By (18)