A comparative metabolomics study on anadromous clupeid Tenualosa ilisha for better understanding the influence of habitat on nutritional composition.

Satabdi Ganguly, Tandrima Mitra, Arabinda Mahanty, Sasmita Mohanty, Bimal P Mohanty
Author Information
  1. Satabdi Ganguly: Fishery Resource and Environmental Management Division, Biochemistry Laboratory, ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, India. ORCID
  2. Tandrima Mitra: Fishery Resource and Environmental Management Division, Biochemistry Laboratory, ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, India. ORCID
  3. Arabinda Mahanty: Fishery Resource and Environmental Management Division, Biochemistry Laboratory, ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, India. ORCID
  4. Sasmita Mohanty: Department of Biotechnology, Faculty of Science and Technology, Rama Devi Women's' University, Bhubaneswar, 751022, India. ORCID
  5. Bimal P Mohanty: Fishery Resource and Environmental Management Division, Biochemistry Laboratory, ICAR- Central Inland Fisheries Research Institute, Barrackpore, Kolkata, 700 120, India. bimal.mohanty@icar.gov.in. ORCID

Abstract

INTRODUCTION: Fish inhabiting different aquatic habitats adapts to the environment by metabolomic readjustments. Understanding the combined activities of all the metabolic pathways (metabolome) helps in better understanding the complex interactions between gene and environment.
OBJECTIVES: The anadromous migratory Tenualosa ilisha is a high value food fish comprising the dominant fishery of the rivers Padma and Hooghly. The present study aimed at understanding the influence of the two habitats on the nutritional composition of hilsa.
METHODS: Metabolite profiling was carried out by GC/MS. De novo assembly of hilsa liver transcriptome was generated under Illumina HiSeq platform and multivariate analysis was employed for correlation and comparison.
RESULTS: GC/MS fingerprinting showed C16:0, C18:1, C20:5 and C22:6 to be the predominant fatty acids present in hilsa liver, which were also found to be significantly higher in Hooghly hilsa. Comparative transcriptome analysis revealed that the differentially expressed genes were mainly associated with 'lipid metabolism' and 'amino acid metabolism' pathways. Multivariate analysis between the metabolites amino acid, fatty acid and corresponding gene expression showed that few genes of amino acid metabolism (EZH1, ALAS2 and ALDH4A1) positively correlated with individual amino acids (lysine, glycine and glutamate) in Hooghly hilsa. Similarly, the key genes for LC-PUFA biosynthesis (ELOVL5, FADS2, CPT1) showed positive correlation with individual LC-PUFAs (C18:3, C20:4, C20:5, C22:6), indicating higher LC-PUFA biosynthesis potential in Hooghly hilsa.
CONCLUSION: Comparative metabolomic study in hilsa from the two different habitats showed that the habitats influence the nutritional composition as evidenced by high abundance of amino acids lysine, leucine and arginine and LC-PUFAs C18:3, C20:4, C20:5, C22:6 in Hooghly hilsa.

Keywords

References

  1. Biochim Biophys Acta. 2013 Nov;1833(11):2499-510 [PMID: 23711956]
  2. Methods Mol Biol. 2000;132:365-86 [PMID: 10547847]
  3. Biochem J. 1998 Nov 15;336 ( Pt 1):1-17 [PMID: 9806879]
  4. Biomed Res Int. 2016;2016:4027437 [PMID: 27579313]
  5. Biochim Biophys Acta. 2009 Nov;1791(11):1093-101 [PMID: 19615462]
  6. Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Jan;1862(1):25-38 [PMID: 27650064]
  7. Sci Rep. 2019 Nov 11;9(1):16511 [PMID: 31712633]
  8. BMC Genomics. 2010 Jun 11;11:372 [PMID: 20540717]
  9. Nat Rev Genet. 2011 Feb;12(2):87-98 [PMID: 21191423]
  10. Biochim Biophys Acta. 2014 Dec;1841(12):1656-60 [PMID: 25311171]
  11. Chemosphere. 2018 Nov;211:535-546 [PMID: 30092534]
  12. Food Chem. 2019 Jan 30;272:549-558 [PMID: 30309580]
  13. Sci Rep. 2016 Feb 09;6:20510 [PMID: 26856376]
  14. Food Chem. 2019 Sep 30;293:561-570 [PMID: 31151648]
  15. BMC Genomics. 2012 Aug 20;13:410 [PMID: 22905698]
  16. Prog Lipid Res. 2016 Apr;62:25-40 [PMID: 26769304]
  17. Metabolomics. 2019 Mar 25;15(4):51 [PMID: 30911851]
  18. Nat Chem Biol. 2011 Nov 27;8(1):111-6 [PMID: 22119861]
  19. Adv Nutr. 2011 Jan;2(1):15-22 [PMID: 22211186]
  20. Clin Chem. 2009 Apr;55(4):611-22 [PMID: 19246619]
  21. Int J Mol Med. 2007 Sep;20(3):351-8 [PMID: 17671740]
  22. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  23. Endocr Rev. 1993 Oct;14(5):610-31 [PMID: 8262009]
  24. BMC Genomics. 2015;16 Suppl 12:S9 [PMID: 26678408]
  25. Methods Mol Biol. 2009;579:375-89 [PMID: 19763486]
  26. Nat Genet. 2000 Dec;26(4):474-9 [PMID: 11101849]
  27. J Biol Chem. 1957 May;226(1):497-509 [PMID: 13428781]
  28. Biochim Biophys Acta. 2003 Apr 11;1647(1-2):361-6 [PMID: 12686158]
  29. J Clin Invest. 1991 Aug;88(2):531-9 [PMID: 1864964]
  30. Genome Res. 2008 Sep;18(9):1509-17 [PMID: 18550803]
  31. F1000Res. 2019 Mar 22;8:320 [PMID: 31602298]
  32. Comp Biochem Physiol B Biochem Mol Biol. 2011 Aug;159(4):206-13 [PMID: 21571087]
  33. IUBMB Life. 2004 Jul;56(7):379-85 [PMID: 15545214]
  34. Biochim Biophys Acta. 2012 Mar;1821(3):345-57 [PMID: 21736953]
  35. J Hum Hypertens. 2001 Feb;15(2):93-8 [PMID: 11317187]
  36. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402 [PMID: 9254694]
  37. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  38. Biochim Biophys Acta. 2016 Mar;1861(3):227-38 [PMID: 26732752]
  39. Food Res Int. 2018 Jan;103:21-29 [PMID: 29389608]
  40. J Biol Chem. 1996 Apr 19;271(16):9795-800 [PMID: 8621661]
  41. Metabolomics. 2019 Jul 31;15(8):108 [PMID: 31367897]
  42. Genes Genomics. 2019 Jan;41(1):1-15 [PMID: 30196475]
  43. BMC Genomics. 2014 Jul 04;15:558 [PMID: 24996224]
  44. Mar Biotechnol (NY). 2009 Sep-Oct;11(5):627-39 [PMID: 19184219]

MeSH Term

Amino Acids
Animals
Fatty Acids
Fishes
Lipid Metabolism
Metabolomics
Multivariate Analysis
Nutritive Value

Chemicals

Amino Acids
Fatty Acids

Word Cloud

Created with Highcharts 10.0.0hilsaHooghlyhabitatsshowedacidaminounderstandingstudyinfluencenutritionalcompositionanalysisC20:5C22:6acidsgenesdifferentenvironmentmetabolomicpathwaysbettergeneanadromousTenualosailishahighpresenttwoGC/MSlivertranscriptomecorrelationfattyhigherComparativemetabolism'individuallysineLC-PUFAbiosynthesisLC-PUFAsC18:3C20:4INTRODUCTION:FishinhabitingaquaticadaptsreadjustmentsUnderstandingcombinedactivitiesmetabolicmetabolomehelpscomplexinteractionsOBJECTIVES:migratoryvaluefoodfishcomprisingdominantfisheryriversPadmaaimedMETHODS:MetaboliteprofilingcarriedDenovoassemblygeneratedIlluminaHiSeqplatformmultivariateemployedcomparisonRESULTS:fingerprintingC16:0C18:1predominantalsofoundsignificantlyrevealeddifferentiallyexpressedmainlyassociated'lipid'aminoMultivariatemetabolitescorrespondingexpressionmetabolismEZH1ALAS2ALDH4A1positivelycorrelatedglycineglutamateSimilarlykeyELOVL5FADS2CPT1positiveindicatingpotentialCONCLUSION:evidencedabundanceleucineargininecomparativemetabolomicsclupeidhabitatHabitatHilsaLiverMetabolitesMetabolomicsTranscriptomics

Similar Articles

Cited By (4)