The Future of Origin of Life Research: Bridging Decades-Old Divisions.

Martina Preiner, Silke Asche, Sidney Becker, Holly C Betts, Adrien Boniface, Eloi Camprubi, Kuhan Chandru, Valentina Erastova, Sriram G Garg, Nozair Khawaja, Gladys Kostyrka, Rainer Machné, Giacomo Moggioli, Kamila B Muchowska, Sinje Neukirchen, Benedikt Peter, Edith Pichlhöfer, Ádám Radványi, Daniele Rossetto, Annalena Salditt, Nicolas M Schmelling, Filipa L Sousa, Fernando D K Tria, Dániel Vörös, Joana C Xavier
Author Information
  1. Martina Preiner: Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany. ORCID
  2. Silke Asche: School of Chemistry, University of Glasgow, Glasgow G128QQ, UK. ORCID
  3. Sidney Becker: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK. ORCID
  4. Holly C Betts: School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK.
  5. Adrien Boniface: Environmental Microbial Genomics, Laboratoire Ampère, Ecole Centrale de Lyon, Université de Lyon, 69130 Ecully, France.
  6. Eloi Camprubi: Origins Center, Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands.
  7. Kuhan Chandru: Space Science Center (ANGKASA), Institute of Climate Change, Level 3, Research Complex, National University of Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
  8. Valentina Erastova: UK Centre for Astrobiology, School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, UK.
  9. Sriram G Garg: Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
  10. Nozair Khawaja: Institut für Geologische Wissenschaften, Freie Universität Berlin, 12249 Berlin, Germany.
  11. Gladys Kostyrka: Lycée Colbert, BP 50620 59208 Tourcoing Cedex, France.
  12. Rainer Machné: Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany. ORCID
  13. Giacomo Moggioli: School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4DQ, UK.
  14. Kamila B Muchowska: Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France. ORCID
  15. Sinje Neukirchen: Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria. ORCID
  16. Benedikt Peter: Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
  17. Edith Pichlhöfer: Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria.
  18. Ádám Radványi: Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
  19. Daniele Rossetto: Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy. ORCID
  20. Annalena Salditt: Systems Biophysics, Physics Department, Ludwig-Maximilians-Universität München, 80799 Munich, Germany.
  21. Nicolas M Schmelling: Institute of Synthetic Microbiology, University of Düsseldorf, 40225 Düsseldorf, Germany.
  22. Filipa L Sousa: Archaea Biology and Ecogenomics Division, University of Vienna, 1090 Vienna, Austria.
  23. Fernando D K Tria: Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany.
  24. Dániel Vörös: Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary.
  25. Joana C Xavier: Institute of Molecular Evolution, University of Düsseldorf, 40225 Düsseldorf, Germany. ORCID

Abstract

Research on the origin of life is highly heterogeneous. After a peculiar historical development, it still includes strongly opposed views which potentially hinder progress. In the 1st Interdisciplinary Origin of Life Meeting, early-career researchers gathered to explore the commonalities between theories and approaches, critical divergence points, and expectations for the future. We find that even though classical approaches and theories-e.g. bottom-up and top-down, RNA world vs. metabolism-first-have been prevalent in origin of life research, they are ceasing to be mutually exclusive and they can and should feed integrating approaches. Here we focus on pressing questions and recent developments that bridge the classical disciplines and approaches, and highlight expectations for future endeavours in origin of life research.

Keywords

References

  1. J Mol Evol. 2016 Mar;82(2-3):75-80 [PMID: 26767654]
  2. Biochim Biophys Acta. 2013 Feb;1827(2):79-93 [PMID: 22982447]
  3. Bioessays. 2018 Nov;40(11):e1800149 [PMID: 30216479]
  4. Nat Chem. 2016 Mar;8(3):264-9 [PMID: 26892559]
  5. Nat Chem. 2017 Apr;9(4):325-332 [PMID: 28338682]
  6. Life (Basel). 2016 Jan 26;6(1): [PMID: 26821048]
  7. J Mol Evol. 2016 Dec;83(5-6):214-222 [PMID: 27896387]
  8. Orig Life Evol Biosph. 2004 Jun;34(3):307-21 [PMID: 15068037]
  9. Science. 2008 Oct 17;322(5900):404 [PMID: 18927386]
  10. Nat Microbiol. 2016 Jul 25;1(9):16116 [PMID: 27562259]
  11. Orig Life Evol Biosph. 1988;18(1-2):1-11 [PMID: 3285284]
  12. Cold Spring Harb Perspect Biol. 2012 May 01;4(5): [PMID: 20739415]
  13. J Mol Evol. 1976 Mar 29;7(2):101-4 [PMID: 1263263]
  14. Cell. 1983 Dec;35(3 Pt 2):849-57 [PMID: 6197186]
  15. Nature. 2001 Feb 22;409(6823):1083-91 [PMID: 11234022]
  16. Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):32910-32918 [PMID: 33376214]
  17. Chem Soc Rev. 2012 Jan 7;41(1):79-85 [PMID: 21952478]
  18. Faraday Discuss. 2019 Aug 15;218(0):9-28 [PMID: 31317165]
  19. Mol Syst Biol. 2014 Apr 25;10:725 [PMID: 24771084]
  20. Mol Biosyst. 2015 Dec;11(12):3206-17 [PMID: 26490759]
  21. Philos Trans R Soc Lond B Biol Sci. 2007 Oct 29;362(1486):1887-925 [PMID: 17255002]
  22. Proc Natl Acad Sci U S A. 2019 Mar 19;116(12):5387-5392 [PMID: 30842280]
  23. J Biotechnol. 2012 Jul 31;160(1-2):17-24 [PMID: 22465599]
  24. Trends Microbiol. 2016 Jan;24(1):12-25 [PMID: 26578093]
  25. Astrobiology. 2018 Sep;18(9):1199-1219 [PMID: 30124324]
  26. Biophys Chem. 2007 Apr;127(1-2):123-8 [PMID: 17289252]
  27. Microbiology (Reading). 2010 Feb;156(Pt 2):287-301 [PMID: 19910409]
  28. Nat Commun. 2018 Jan 11;9(1):163 [PMID: 29323115]
  29. Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13168-73 [PMID: 15340153]
  30. Annu Rev Microbiol. 2018 Sep 08;72:331-353 [PMID: 29924687]
  31. Bioessays. 2013 Dec;35(12):1050-5 [PMID: 24114984]
  32. J R Soc Interface. 2012 Dec 12;10(79):20120869 [PMID: 23235265]
  33. Nature. 2010 May 13;465(7295):219-22 [PMID: 20463738]
  34. Science. 2017 Apr 14;356(6334):155-159 [PMID: 28408597]
  35. Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4442-7 [PMID: 15764708]
  36. Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15697-701 [PMID: 22927374]
  37. Philos Trans R Soc Lond B Biol Sci. 2013 Jun 10;368(1622):20120255 [PMID: 23754809]
  38. Trends Biochem Sci. 2018 Jun;43(6):402-411 [PMID: 29655512]
  39. Cold Spring Harb Symp Quant Biol. 2009;74:47-54 [PMID: 19734203]
  40. Nat Ecol Evol. 2020 Apr;4(4):534-542 [PMID: 32123322]
  41. Sci Adv. 2019 Jan 16;5(1):eaau0149 [PMID: 30746442]
  42. Science. 2008 Feb 29;319(5867):1215-20 [PMID: 18218864]
  43. Mol Microbiol. 2016 Feb;99(3):470-83 [PMID: 26202476]
  44. Chemistry. 2018 Nov 13;24(63):16708-16715 [PMID: 29870593]
  45. Biol Direct. 2006 Sep 19;1:29 [PMID: 16984643]
  46. Philos Trans A Math Phys Eng Sci. 2017 Dec 28;375(2109): [PMID: 29133439]
  47. EMBO Rep. 2000 Sep;1(3):217-22 [PMID: 11256602]
  48. Life (Basel). 2019 Oct 23;9(4): [PMID: 31652727]
  49. Life (Basel). 2018 May 10;8(2): [PMID: 29748464]
  50. Microbiology (Reading). 2010 Mar;156(Pt 3):603-608 [PMID: 20093288]
  51. Nat Rev Microbiol. 2008 Aug;6(8):579-91 [PMID: 18587410]
  52. Open Biol. 2013 Nov 06;3(11):130156 [PMID: 24196781]
  53. Life (Basel). 2015 Apr 10;5(2):1239-63 [PMID: 25867709]
  54. Biosystems. 2016 Jun;144:8-17 [PMID: 26968100]
  55. Bioessays. 2018 Jul;40(7):e1700179 [PMID: 29870581]
  56. Science. 2002 Aug 9;297(5583):1016-8 [PMID: 12114528]
  57. Science. 1961 Nov 10;134(3489):1501-6 [PMID: 14471768]
  58. Nature. 1994 Jan 13;367(6459):111 [PMID: 8114905]
  59. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9786-91 [PMID: 27528667]
  60. Proc Natl Acad Sci U S A. 2019 Aug 6;116(32):15830-15835 [PMID: 31332006]
  61. Nucleic Acids Res. 2013 Jan;41(Database issue):D456-63 [PMID: 23180789]
  62. Angew Chem Int Ed Engl. 2016 Jan 4;55(1):104-21 [PMID: 26510485]
  63. Life (Basel). 2016 Jul 26;6(3): [PMID: 27472365]
  64. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6854-9 [PMID: 9618502]
  65. Nature. 2008 Jul 3;454(7200):122-5 [PMID: 18528332]
  66. Nat Ecol Evol. 2018 Jun;2(6):1019-1024 [PMID: 29686234]
  67. Proc Natl Acad Sci U S A. 2018 Nov 27;115(48):12164-12169 [PMID: 30413624]
  68. Chem Rev. 2014 Jan 8;114(1):285-366 [PMID: 24171674]
  69. Proc Natl Acad Sci U S A. 1975 May;72(5):1909-12 [PMID: 1057181]
  70. Annu Rev Genet. 2017 Nov 27;51:45-62 [PMID: 28853922]
  71. Nucleic Acids Res. 2013 Jan;41(Database issue):D1079-82 [PMID: 23193296]
  72. Philos Trans A Math Phys Eng Sci. 2016 Mar 13;374(2063): [PMID: 26857674]
  73. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5970-5 [PMID: 27140646]
  74. Nat Chem. 2009 Aug;1(5):377-83 [PMID: 21378891]
  75. Trends Biochem Sci. 1999 Jun;24(6):241-7 [PMID: 10366854]
  76. Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361 [PMID: 27899662]
  77. Nat Nanotechnol. 2015 Feb;10(2):111-9 [PMID: 25652169]
  78. Proc Natl Acad Sci U S A. 1966 Apr;55(4):966-74 [PMID: 5219702]
  79. Curr Opin Microbiol. 2004 Oct;7(5):513-8 [PMID: 15451507]
  80. Orig Life Evol Biosph. 2019 Sep;49(3):111-145 [PMID: 31399826]
  81. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):E821-30 [PMID: 22331915]
  82. Astrobiology. 2009 Jun;9(5):483-90 [PMID: 19566427]
  83. Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):11327-11332 [PMID: 28973920]
  84. Proc Natl Acad Sci U S A. 2019 Aug 13;116(33):16338-16346 [PMID: 31358633]
  85. Cold Spring Harb Perspect Biol. 2010 May;2(5):a002162 [PMID: 20452963]
  86. Microbiol Mol Biol Rev. 2014 Sep;78(3):487-509 [PMID: 25184563]
  87. Life (Basel). 2017 Mar 23;7(2): [PMID: 28333103]
  88. J Mol Evol. 2017 Mar;84(2-3):85-92 [PMID: 28243688]
  89. Nature. 2016 Sep 28;537(7622):656-60 [PMID: 27680939]
  90. Nat Commun. 2017 Dec 11;8(1):2033 [PMID: 29229963]
  91. Chem Soc Rev. 2017 May 9;46(9):2543-2554 [PMID: 28418049]
  92. Elife. 2018 May 15;7: [PMID: 29759114]
  93. Artif Life. 2012 Summer;18(3):243-66 [PMID: 22662913]
  94. IUBMB Life. 2000 Mar;49(3):173-6 [PMID: 10868906]
  95. Nature. 2018 Jun;558(7711):564-568 [PMID: 29950623]
  96. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10268-73 [PMID: 8816789]
  97. Nat Rev Microbiol. 2016 Aug;14(8):535-542 [PMID: 28232669]
  98. Nat Chem. 2015 Feb;7(2):160-5 [PMID: 25615670]
  99. BMC Evol Biol. 2011 May 25;11:140 [PMID: 21612591]
  100. Orig Life Evol Biosph. 2003 Dec;33(6):559-74 [PMID: 14601926]
  101. Trends Biochem Sci. 2004 Jul;29(7):358-63 [PMID: 15236743]
  102. Nat Chem. 2015 Mar;7(3):203-8 [PMID: 25698328]
  103. J Mol Evol. 2014 Dec;79(5-6):213-27 [PMID: 25428684]
  104. Orig Life Evol Biosph. 2011 Feb;41(1):23-33 [PMID: 20333546]
  105. J Theor Biol. 2015 Sep 21;381:39-54 [PMID: 26087284]
  106. Cold Spring Harb Perspect Biol. 2011 Apr 01;3(4): [PMID: 20719875]
  107. Nat Rev Microbiol. 2008 Nov;6(11):805-14 [PMID: 18820700]
  108. Nat Ecol Evol. 2019 Dec;3(12):1705-1714 [PMID: 31686020]
  109. Science. 1953 May 15;117(3046):528-9 [PMID: 13056598]
  110. Nucleic Acids Res. 2016 Jan 4;44(D1):D515-22 [PMID: 26476456]
  111. Proc Natl Acad Sci U S A. 2019 Aug 27;116(35):17239-17244 [PMID: 31405964]
  112. Science. 1959 Jul 31;130(3370):245-51 [PMID: 13668555]
  113. Orig Life Evol Biosph. 2008 Feb;38(1):57-74 [PMID: 18008180]
  114. Sci Rep. 2019 Aug 28;9(1):12468 [PMID: 31462646]
  115. Cold Spring Harb Perspect Biol. 2010 Feb;2(2):a004929 [PMID: 20182625]
  116. Trends Genet. 1999 Jun;15(6):223-9 [PMID: 10354582]
  117. Orig Life Evol Biosph. 2001 Feb-Apr;31(1-2):119-45 [PMID: 11296516]
  118. Nat Prod Rep. 2002 Jun;19(3):292-311 [PMID: 12137279]
  119. Nat Ecol Evol. 2018 Oct;2(10):1556-1562 [PMID: 30127539]
  120. PLoS Genet. 2013;9(1):e1003187 [PMID: 23300488]
  121. Gene. 2000 Dec 30;261(1):139-51 [PMID: 11164045]
  122. Prog Biophys Mol Biol. 2001;75(1-2):75-120 [PMID: 11311715]
  123. Biosystems. 2018 Feb;164:217-225 [PMID: 29031737]
  124. Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1470-5 [PMID: 20080693]
  125. Orig Life Evol Biosph. 2018 Jun;48(2):159-179 [PMID: 29502283]
  126. Nat Chem. 2011 Sep 04;3(10):775-81 [PMID: 21941249]
  127. Nat Rev Microbiol. 2003 Nov;1(2):127-36 [PMID: 15035042]
  128. Nat Commun. 2018 Dec 12;9(1):5177 [PMID: 30538226]
  129. Life (Basel). 2019 Jun 18;9(2): [PMID: 31216665]
  130. Beilstein J Org Chem. 2017 Jun 21;13:1189-1203 [PMID: 28694865]
  131. Sci Rep. 2016 Jul 21;6:29883 [PMID: 27443234]
  132. Astrobiology. 2009 Mar;9(2):241-9 [PMID: 19292603]
  133. Nat Chem. 2019 Sep;11(9):779-788 [PMID: 31358919]
  134. Cell. 1982 Nov;31(1):147-57 [PMID: 6297745]
  135. Nature. 2019 Aug;572(7770):451-460 [PMID: 31435057]
  136. Life (Basel). 2019 Mar 01;9(1): [PMID: 30823659]
  137. Anat Rec. 2002 Nov 1;268(3):239-51 [PMID: 12382322]
  138. Nature. 2015 Sep 17;525(7569):305 [PMID: 26381966]
  139. Int J Mol Sci. 2011;12(6):3445-58 [PMID: 21747687]
  140. Nature. 1977 Mar 3;266(5597):78-80 [PMID: 840303]
  141. Astrobiology. 2018 Mar;18(3):259-293 [PMID: 29489386]
  142. Life (Basel). 2020 Jan 19;10(1): [PMID: 31963928]
  143. Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2763-8 [PMID: 20160129]
  144. Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4585-9 [PMID: 20176971]
  145. Nat Chem. 2019 Nov;11(11):1009-1018 [PMID: 31527850]
  146. Science. 2019 Oct 4;366(6461):76-82 [PMID: 31604305]
  147. Biochem J. 2018 Aug 30;475(16):2577-2592 [PMID: 30166494]
  148. FEMS Microbiol Rev. 2004 Jun;28(3):335-52 [PMID: 15449607]
  149. Astrobiology. 2017 Sep;17(9):820-833 [PMID: 28836818]
  150. Orig Life Evol Biosph. 2010 Apr;40(2):119-20 [PMID: 20204520]
  151. Int J Mol Sci. 2009 Apr 22;10(4):1853-1871 [PMID: 19468343]
  152. Chem Biol. 2013 Apr 18;20(4):466-74 [PMID: 23601635]
  153. Chem Commun (Camb). 2015 Nov 21;51(90):16160-5 [PMID: 26465292]
  154. Nature. 2019 May;569(7754):104-107 [PMID: 31043728]
  155. Astrobiology. 2012 Sep;12(9):809-17 [PMID: 22917035]
  156. PLoS Biol. 2008 Jan;6(1):e18 [PMID: 18215113]
  157. Nature. 2002 Nov 21;420(6913):278-9 [PMID: 12447426]
  158. RNA. 2004 Dec;10(12):1833-7 [PMID: 15547132]
  159. Crit Rev Biochem Mol Biol. 2004 Mar-Apr;39(2):99-123 [PMID: 15217990]
  160. Philos Trans A Math Phys Eng Sci. 2017 Dec 28;375(2109): [PMID: 29133446]
  161. Naturwissenschaften. 1971 Oct;58(10):465-523 [PMID: 4942363]
  162. Astrobiology. 2015 Mar;15(3):200-6 [PMID: 25761113]
  163. Life (Basel). 2017 Jan 17;7(1): [PMID: 28106741]
  164. J Theor Biol. 1997 Aug 21;187(4):483-94 [PMID: 9299293]
  165. Rapid Commun Mass Spectrom. 2016 Sep 30;30(18):2043-51 [PMID: 27467333]
  166. Biol Direct. 2012 Feb 10;7:6 [PMID: 22325238]
  167. Stud Hist Philos Biol Biomed Sci. 2016 Oct;59:135-44 [PMID: 26996411]
  168. Chem Rev. 1998 May 7;98(3):961-990 [PMID: 11848921]
  169. J Theor Biol. 1997 Aug 21;187(4):555-71 [PMID: 9299299]
  170. Philos Trans R Soc Lond B Biol Sci. 2013 Jun 10;368(1622):20130088 [PMID: 23754820]
  171. Orig Life Evol Biosph. 2010 Oct;40(4-5):347-497 [PMID: 20571915]
  172. Endeavour. 2006 Mar;30(1):24-8 [PMID: 16469383]
  173. Cell. 2017 Mar 9;168(6):1126-1134.e9 [PMID: 28262353]
  174. J Theor Biol. 2008 Jun 7;252(3):505-19 [PMID: 18160077]
  175. Biochem J. 2009 Feb 1;417(3):621-37 [PMID: 19133840]
  176. Astrobiology. 2015 Dec;15(12):1031-42 [PMID: 26684503]
  177. Nat Commun. 2015 Oct 07;6:8385 [PMID: 26442968]

Grants

  1. MA-1426/21-1/Deutsche Forschungsgemeinschaft
  2. 666053/European Research Council
  3. 93046/Volkswagen Foundation
  4. C.Z. 02.2.69/0.0/0.0/16_027/0008351/European Structural and Investment Funds Operational Programme
  5. GGP-2019-029/Research Encouragement Fund UKM
  6. 803768/European Research Council
  7. VRG15-007/Vienna Science and Technology Fund
  8. GINOP 2.3.2-15-2016-00057/National Research, Development and Innovation Office
  9. 724908/European Research Council

Word Cloud

Created with Highcharts 10.0.0lifeapproachesoriginOriginLifeexpectationsfutureclassicalbottom-uptop-downresearchResearchhighlyheterogeneouspeculiarhistoricaldevelopmentstillincludesstronglyopposedviewspotentiallyhinderprogress1stInterdisciplinaryMeetingearly-careerresearchersgatheredexplorecommonalitiestheoriescriticaldivergencepointsfindeventhoughtheories-egRNAworldvsmetabolism-first-haveprevalentceasingmutuallyexclusivecanfeedintegratingfocuspressingquestionsrecentdevelopmentsbridgedisciplineshighlightendeavoursFutureResearch:BridgingDecades-OldDivisionsLUCAabiogenesisearlyemergenceoriginsprebioticchemistry

Similar Articles

Cited By (34)