Neocortical morphometry in Huntington's disease: Indication of the coexistence of abnormal neurodevelopmental and neurodegenerative processes.

Jean-Francois Mangin, Denis Rivière, Edouard Duchesnay, Yann Cointepas, Véronique Gaura, Christophe Verny, Philippe Damier, Pierre Krystkowiak, Anne-Catherine Bachoud-Lévi, Philippe Hantraye, Philippe Remy, Gwenaëlle Douaud
Author Information
  1. Jean-Francois Mangin: Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France.
  2. Denis Rivière: Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France.
  3. Edouard Duchesnay: Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France.
  4. Yann Cointepas: Université Paris-Saclay, CEA, CNRS, Baobab, Neurospin, Gif-sur-Yvette, France.
  5. Véronique Gaura: Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), MIRCen, France.
  6. Christophe Verny: Centre national de référence des maladies neurogénétiques, Service de neurologie, CHU, 49000 Angers, France, UMR CNRS 6214 - INSERM U1083, France.
  7. Philippe Damier: CHU Nantes, INSERM, CIC 0004, France.
  8. Pierre Krystkowiak: Neurologie, CHU Amiens-Picardie, France.
  9. Anne-Catherine Bachoud-Lévi: AP-HP, Hôpital Henri Mondor, Centre de Référence-Maladie de Huntington, France.
  10. Philippe Hantraye: MIRCen, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique et aux Energies Alternatives, France.
  11. Philippe Remy: Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Département des Sciences du Vivant (DSV), Institut d'Imagerie Biomédicale (I2BM), MIRCen, France.
  12. Gwenaëlle Douaud: Functional Magnetic Resonance Imaging of the Brain (FMRIB) Centre, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom. Electronic address: gwenaelle.douaud@ndcn.ox.ac.uk.

Abstract

Huntington's disease (HD) is an inherited, autosomal dominant disorder that is characteristically thought of as a degenerative disorder. Despite cellular and molecular grounds suggesting HD could also impact normal development, there has been scarce systems-level data obtained from in vivo human studies supporting this hypothesis. Sulcus-specific morphometry analysis may help disentangle the contribution of coexisting neurodegenerative and neurodevelopmental processes, but such an approach has never been used in HD. Here, we investigated cortical sulcal depth, related to degenerative process, as well as cortical sulcal length, related to developmental process, in early-stage HD and age-matched healthy controls. This morphometric analysis revealed significant differences in the HD participants compared with the healthy controls bilaterally in the central and intra-parietal sulcus, but also in the left intermediate frontal sulcus and calcarine fissure. As the primary visual cortex is not connected to the striatum, the latter result adds to the increasing in vivo evidence for primary cortical degeneration in HD. Those sulcal measures that differed between HD and healthy populations were mainly atrophy-related, showing shallower sulci in HD. Conversely, the sulcal morphometry also revealed a crucial difference in the imprint of the Sylvian fissure that could not be related to loss of grey matter volume: an absence of asymmetry in the length of this fissure in HD. Strong asymmetry in that cortical region is typically observed in healthy development. As the formation of the Sylvian fissure appears early in utero, and marked asymmetry is specifically found in this area of the neocortex in newborns, this novel finding likely indicates the foetal timing of a disease-specific, genetic interplay with neurodevelopment.

Keywords

References

  1. Exp Neurol. 1998 Dec;154(2):663-72 [PMID: 9878201]
  2. Brain. 2002 Aug;125(Pt 8):1815-28 [PMID: 12135972]
  3. Cereb Cortex. 2008 Mar;18(3):571-83 [PMID: 17584852]
  4. Trends Neurosci. 2000 Dec;23(12):599-605 [PMID: 11137149]
  5. Neuroimage. 2006 Oct 1;32(4):1562-75 [PMID: 16875847]
  6. J Anat Physiol. 1907 Jul;41(Pt 4):293-301 [PMID: 17232741]
  7. Neuroimage. 2004 Aug;22(4):1732-43 [PMID: 15275929]
  8. J Neurosci. 2010 Mar 3;30(9):3271-5 [PMID: 20203186]
  9. Neurology. 1979 Jan;29(1):1-3 [PMID: 154626]
  10. Neurology. 2012 Aug 14;79(7):621-2 [PMID: 22815547]
  11. Handb Clin Neurol. 2017;144:69-91 [PMID: 28947127]
  12. J Cogn Neurosci. 2014 Jan;26(1):96-106 [PMID: 23915057]
  13. Brain Lang. 2004 Apr;89(1):122-35 [PMID: 15010244]
  14. Proc Natl Acad Sci U S A. 2015 Jan 27;112(4):1208-13 [PMID: 25583500]
  15. Neuroimage. 2004;23 Suppl 1:S129-38 [PMID: 15501082]
  16. J Neural Transm (Vienna). 2007 Mar;114(3):367-72 [PMID: 17024326]
  17. Hum Brain Mapp. 2005 Nov;26(3):210-20 [PMID: 16161162]
  18. Neurodegener Dis. 2013;12(1):23-35 [PMID: 22922585]
  19. Cereb Cortex. 2012 May;22(5):1038-51 [PMID: 21765181]
  20. Neurosci Lett. 1991 Dec 9;133(2):257-61 [PMID: 1840078]
  21. Am J Psychiatry. 2007 Sep;164(9):1428-34 [PMID: 17728429]
  22. Neurol Med Chir (Tokyo). 2005 Jan;45(1):1-17 [PMID: 15699615]
  23. Cereb Cortex. 2008 Jun;18(6):1444-54 [PMID: 17934189]
  24. Mov Disord. 2006 Dec;21(12):2140-4 [PMID: 17029272]
  25. Neurology. 2005 Sep 13;65(5):745-7 [PMID: 16157910]
  26. Brain. 2011 Jan;134(Pt 1):137-42 [PMID: 20923788]
  27. Mov Disord. 1996 Mar;11(2):136-42 [PMID: 8684382]
  28. Brain Pathol. 2015 Nov;25(6):701-11 [PMID: 25495445]
  29. Neurobiol Aging. 2015 Nov;36(11):2932-2939 [PMID: 26256787]
  30. Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21900-5 [PMID: 19955426]
  31. Mov Disord. 2015 Feb;30(2):238-44 [PMID: 25545969]
  32. Neurology. 2004 Nov 9;63(9):1640-6 [PMID: 15534249]
  33. Neurology. 2002 Mar 12;58(5):695-701 [PMID: 11889230]
  34. Brain. 2008 Apr;131(Pt 4):1057-68 [PMID: 18337273]
  35. Neuroimage Clin. 2017 Oct 25;17:312-324 [PMID: 29527479]
  36. Neurology. 2012 Aug 14;79(7):668-74 [PMID: 22815549]
  37. J Alzheimers Dis. 2012;29(3):605-13 [PMID: 22297645]
  38. Neuroimage. 2010 Aug 1;52(1):32-42 [PMID: 20362679]
  39. Brain. 2008 Aug;131(Pt 8):2028-41 [PMID: 18587151]
  40. Hum Brain Mapp. 2013 Mar;34(3):519-29 [PMID: 22102212]
  41. Brain. 2019 Oct 1;142(10):2938-2947 [PMID: 31504236]
  42. Med Image Anal. 2002 Jun;6(2):77-92 [PMID: 12044997]
  43. Mov Disord. 2015 Apr 15;30(5):655-61 [PMID: 25820811]
  44. IEEE Trans Med Imaging. 2007 Apr;26(4):553-65 [PMID: 17427742]
  45. Neuroimage Clin. 2014 Mar 25;4:593-603 [PMID: 24936410]

Grants

  1. MR/K006673/1/Medical Research Council

MeSH Term

Adult
Female
Humans
Huntington Disease
Image Interpretation, Computer-Assisted
Magnetic Resonance Imaging
Male
Middle Aged
Neocortex
Nerve Degeneration
Neurodevelopmental Disorders

Word Cloud

Created with Highcharts 10.0.0HDfissuremorphometrycorticalsulcalhealthyHuntington'salsorelatedSylvianasymmetrydiseasedisorderdegenerativedevelopmentvivoanalysisneurodegenerativeneurodevelopmentalprocessesprocesslengthcontrolsrevealedsulcusprimaryinheritedautosomaldominantcharacteristicallythoughtDespitecellularmoleculargroundssuggestingimpactnormalscarcesystems-leveldataobtainedhumanstudiessupportinghypothesisSulcus-specificmayhelpdisentanglecontributioncoexistingapproachneverusedinvestigateddepthwelldevelopmentalearly-stageage-matchedmorphometricsignificantdifferencesparticipantscomparedbilaterallycentralintra-parietalleftintermediatefrontalcalcarinevisualcortexconnectedstriatumlatterresultaddsincreasingevidencedegenerationmeasuresdifferedpopulationsmainlyatrophy-relatedshowingshallowersulciConverselycrucialdifferenceimprintlossgreymattervolume:absenceStrongregiontypicallyobservedformationappearsearlyuteromarkedspecificallyfoundareaneocortexnewbornsnovelfindinglikelyindicatesfoetaltimingdisease-specificgeneticinterplayneurodevelopmentNeocorticaldisease:IndicationcoexistenceabnormalAsymmetryCorticalMRINeurodevelopment

Similar Articles

Cited By (8)