High Fidelity of Mouse Models Mimicking Human Genetic Skeletal Disorders.

Robert Brommage, Claes Ohlsson
Author Information
  1. Robert Brommage: Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
  2. Claes Ohlsson: Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.

Abstract

The 2019 International Skeletal Dysplasia Society nosology update lists 441 genes for which mutations result in rare human skeletal disorders. These genes code for enzymes (33%), scaffolding proteins (18%), signal transduction proteins (16%), transcription factors (14%), cilia proteins (8%), extracellular matrix proteins (5%), and membrane transporters (4%). Skeletal disorders include aggrecanopathies, channelopathies, ciliopathies, cohesinopathies, laminopathies, linkeropathies, lysosomal storage diseases, protein-folding and RNA splicing defects, and ribosomopathies. With the goal of evaluating the ability of mouse models to mimic these human genetic skeletal disorders, a PubMed literature search identified 260 genes for which mutant mice were examined for skeletal phenotypes. These mouse models included spontaneous and ENU-induced mutants, global and conditional gene knockouts, and transgenic mice with gene over-expression or specific base-pair substitutions. The human X-linked gene and small nuclear RNA , a component of the minor spliceosome, do not have mouse homologs. Mouse skeletal phenotypes mimicking human skeletal disorders were observed in 249 of the 260 genes (96%) for which comparisons are possible. A supplemental table in spreadsheet format provides PubMed weblinks to representative publications of mutant mouse skeletal phenotypes. Mutations in 11 mouse genes () do not result in similar skeletal phenotypes observed with mutations of the homologous human genes. These discrepancies can result from failure of mouse models to mimic the exact human gene mutations. There are no obvious commonalities among these 11 genes. Body BMD and/or radiologic dysmorphology phenotypes were successfully identified for 28 genes by the International Mouse Phenotyping Consortium (IMPC). Forward genetics using ENU mouse mutagenesis successfully identified 37 nosology gene phenotypes. Since many human genetic disorders involve hypomorphic, gain-of-function, dominant-negative and intronic mutations, future studies will undoubtedly utilize CRISPR/Cas9 technology to examine transgenic mice having genes modified to exactly mimic variant human sequences. Mutant mice will increasingly be employed for drug development studies designed to treat human genetic skeletal disorders.
SIGNIFICANCE: Great progress is being made identifying mutant genes responsible for human rare genetic skeletal disorders and mouse models for genes affecting bone mass, architecture, mineralization and strength. This review organizes data for 441 human genetic bone disorders with regard to heredity, gene function, molecular pathways, and fidelity of relevant mouse models to mimic the human skeletal disorders. PubMed weblinks to citations of 249 successful mouse models are provided.

Keywords

References

  1. PLoS Biol. 2016 Jun 14;14(6):e1002476 [PMID: 27300367]
  2. J Bone Miner Res. 2014 Oct;29(10):2297-306 [PMID: 24677211]
  3. Nature. 2017 Oct 11;550(7675):244-248 [PMID: 29022598]
  4. Aging Cell. 2013 Feb;12(1):2-10 [PMID: 23095062]
  5. J Bone Miner Res. 2020 Jan;35(1):92-105 [PMID: 31525280]
  6. J Bone Miner Res. 2015 Jun;30(6):1044-52 [PMID: 25529628]
  7. Annu Rev Genomics Hum Genet. 2015;16:199-227 [PMID: 25939055]
  8. Bone. 2017 Nov;104:1-3 [PMID: 27998716]
  9. Calcif Tissue Int. 2001 Jun;68(6):365-9 [PMID: 11685425]
  10. Hum Mutat. 2018 Oct;39(10):1456-1467 [PMID: 30080953]
  11. J Endocrinol. 2018 Jul;238(1):13-23 [PMID: 29720540]
  12. Dev Biol. 2020 Jan 15;457(2):191-205 [PMID: 31325453]
  13. Am J Hum Genet. 2018 Jan 4;102(1):11-26 [PMID: 29304370]
  14. PLoS One. 2014 Mar 18;9(3):e91807 [PMID: 24642684]
  15. J Hered. 2018 Mar 16;109(3):308-314 [PMID: 29036614]
  16. Sci Rep. 2019 Jun 5;9(1):8299 [PMID: 31165768]
  17. Bone. 2017 Sep;102:1-4 [PMID: 28757205]
  18. J Bone Miner Res. 2005 Jul;20(7):1085-92 [PMID: 15940361]
  19. J Bone Miner Res. 2016 May;31(5):1030-40 [PMID: 26716893]
  20. Clin Pediatr Endocrinol. 2018;27(3):193-196 [PMID: 30083037]
  21. Sci Rep. 2019 Jan 30;9(1):973 [PMID: 30700765]
  22. Bone. 2016 Nov;92:189-195 [PMID: 27616604]
  23. Genetics. 2017 Sep;207(1):9-27 [PMID: 28874452]
  24. Am J Med Genet A. 2008 Dec 1;146A(23):3104-12 [PMID: 19006207]
  25. Development. 2009 Feb;136(4):655-64 [PMID: 19144723]
  26. Transgenic Res. 2015 Feb;24(1):167-72 [PMID: 25139670]
  27. Paediatr Drugs. 2019 Apr;21(2):95-106 [PMID: 30941653]
  28. PLoS Biol. 2018 Sep 18;16(9):e2006643 [PMID: 30226837]
  29. J Bone Miner Res. 2013 Jan;28(1):73-80 [PMID: 22836659]
  30. Nat Med. 2019 Apr;25(4):583-590 [PMID: 30804514]
  31. N Engl J Med. 2017 Aug 10;377(6):544-552 [PMID: 28792876]
  32. Bone Res. 2014 Oct 28;2:14034 [PMID: 26273529]
  33. Bone Res. 2019 Jan 8;7:2 [PMID: 30622831]
  34. Sci Rep. 2018 Nov 16;8(1):16945 [PMID: 30446691]
  35. Am J Med Genet A. 2015 Dec;167A(12):2869-92 [PMID: 26394607]
  36. Am J Med Genet A. 2011 May;155A(5):943-68 [PMID: 21438135]
  37. Bone. 2017 Aug;101:145-155 [PMID: 28434888]
  38. JBMR Plus. 2019 Jan 18;3(4):e10128 [PMID: 31044186]
  39. J Clin Invest. 1999 Jan;103(2):239-51 [PMID: 9916136]
  40. PLoS Genet. 2018 Dec 6;14(12):e1007850 [PMID: 30521570]
  41. Am J Hum Genet. 1991 Nov;49(5):1082-90 [PMID: 1928091]
  42. Bone. 2014 Sep;66:182-8 [PMID: 24953712]
  43. J Biomol Tech. 2018 Jul;29(2):25-38 [PMID: 29805321]
  44. J Bone Miner Res. 2015 Nov;30(11):1945-55 [PMID: 26358868]
  45. Dis Model Mech. 2018 Oct 8;11(10): [PMID: 30158213]
  46. JBMR Plus. 2018 Nov 05;3(1):2-13 [PMID: 30680358]
  47. Expert Opin Orphan Drugs. 2015 Oct 3;3(10):1137-1154 [PMID: 26635999]
  48. J Comp Neurol. 2005 Dec 26;493(4):477-8 [PMID: 16304632]
  49. JCI Insight. 2017 Oct 19;2(20): [PMID: 29046478]
  50. Development. 1997 Sep;124(18):3493-500 [PMID: 9342042]
  51. PLoS One. 2015 Feb 06;10(2):e0117055 [PMID: 25659135]
  52. J Vet Intern Med. 2017 Mar;31(2):532-538 [PMID: 28158899]
  53. Am J Med Genet A. 2019 Dec;179(12):2393-2419 [PMID: 31633310]
  54. J Bone Miner Res. 2015 Mar;30(3):519-27 [PMID: 25407438]
  55. Comput Struct Biotechnol J. 2019 Jun 13;17:954-962 [PMID: 31360334]
  56. Front Endocrinol (Lausanne). 2019 Feb 25;10:70 [PMID: 30858824]
  57. J Biol Chem. 2015 Jul 17;290(29):17679-89 [PMID: 26004778]
  58. Int J Med Sci. 2018 Jan 19;15(4):309-322 [PMID: 29511367]
  59. Bone. 2018 Dec;117:31-36 [PMID: 30218789]
  60. Am J Hum Genet. 2019 Mar 7;104(3):466-483 [PMID: 30827497]
  61. Dis Model Mech. 2019 May 7;12(5): [PMID: 31064765]
  62. Bone. 2008 Feb;42(2):439-51 [PMID: 17967568]
  63. Dev Dyn. 2011 May;240(5):1212-22 [PMID: 21509895]
  64. Clin Pediatr (Phila). 2005 Apr;44(3):267-9 [PMID: 15821853]
  65. J Biol Chem. 2006 Aug 18;281(33):23698-711 [PMID: 16790443]
  66. Ann N Y Acad Sci. 2015 Jan;1335:78-99 [PMID: 24961486]
  67. Am J Med Genet A. 2007 Jan 1;143A(1):1-18 [PMID: 17120245]
  68. Sci Rep. 2017 Nov 27;7(1):16406 [PMID: 29180785]
  69. J Biol Chem. 2010 Jun 18;285(25):19510-20 [PMID: 20410296]
  70. Trends Dev Biol. 2012;6:45-52 [PMID: 23950621]
  71. Nat Rev Drug Discov. 2018 May;17(5):317-332 [PMID: 29472638]
  72. Eur J Clin Invest. 2017 Oct;47(10):756-774 [PMID: 28796277]
  73. Endocrinology. 2017 Apr 1;158(4):730-742 [PMID: 28323963]
  74. Matrix Biol. 2016 May-Jul;52-54:151-161 [PMID: 26721590]
  75. Bone. 2015 Jul;76:67-75 [PMID: 25819040]
  76. Curr Osteoporos Rep. 2018 Aug;16(4):466-477 [PMID: 29934753]
  77. PLoS Genet. 2016 Feb 03;12(2):e1005691 [PMID: 26839965]
  78. Front Endocrinol (Lausanne). 2019 May 07;10:277 [PMID: 31133984]
  79. Gene. 2018 Oct 30;675:312-321 [PMID: 29981832]
  80. Nat Rev Genet. 2019 Nov;20(11):631-656 [PMID: 31341269]
  81. N Engl J Med. 2019 Mar 21;380(12):1150-1157 [PMID: 30893535]
  82. Dis Model Mech. 2019 Feb 22;12(2): [PMID: 30819728]
  83. Development. 1997 Sep;124(18):3481-92 [PMID: 9342041]
  84. Handb Exp Pharmacol. 2019 Dec 10;: [PMID: 31820174]
  85. Genome Res. 2015 Jul;25(7):948-57 [PMID: 25917818]
  86. Sci Transl Med. 2013 Nov 13;5(211):211ra158 [PMID: 24225945]
  87. J Clin Endocrinol Metab. 2010 Apr;95(4):1506-7 [PMID: 20150574]
  88. J Cell Physiol. 2018 Jan;234(1):749-756 [PMID: 30076723]
  89. Cell. 2017 Mar 23;169(1):6-12 [PMID: 28340351]
  90. Bone Rep. 2015 Apr 17;2:59-67 [PMID: 28377955]
  91. J Bone Miner Res. 2007 Mar;22(3):394-402 [PMID: 17147489]
  92. Science. 1896 Feb 14;3(59):227-31 [PMID: 17769966]
  93. Sci Transl Med. 2018 Apr 25;10(438): [PMID: 29695453]
  94. J Bone Miner Res. 2017 Jan;32(1):106-114 [PMID: 27419666]
  95. Am J Med Genet C Semin Med Genet. 2012 Aug 15;160C(3):165-74 [PMID: 22791528]
  96. Bone. 2019 Sep;126:37-50 [PMID: 30763636]
  97. Dev Biol. 2016 Jul 15;415(2):216-227 [PMID: 26234751]
  98. Clin Chem. 2017 Sep;63(9):1537-1538 [PMID: 28606913]
  99. Mamm Genome. 2019 Jun;30(5-6):143-150 [PMID: 31127358]
  100. BMC Res Notes. 2012 May 08;5:222 [PMID: 22564426]
  101. Bone. 2017 Mar;96:18-23 [PMID: 27780792]
  102. Dis Model Mech. 2019 Jan 8;12(1): [PMID: 30626588]
  103. Nat Rev Drug Discov. 2003 Jan;2(1):38-51 [PMID: 12509758]
  104. Orphanet J Rare Dis. 2016 Jun 28;11(1):86 [PMID: 27353333]
  105. Biochim Biophys Acta. 2014 Jun;1842(6):769-78 [PMID: 24252615]
  106. J Bone Miner Res. 2019 May;34(5):883-895 [PMID: 30667555]
  107. J Eur Acad Dermatol Venereol. 2011 May;25(5):592-5 [PMID: 20626533]
  108. Curr Osteoporos Rep. 2019 Aug;17(4):178-185 [PMID: 31093870]
  109. PLoS One. 2014 Feb 11;9(2):e88889 [PMID: 24523945]
  110. Clin Genet. 2015 Nov;88(5):405-15 [PMID: 25865758]
  111. Bonekey Rep. 2013 Aug 07;2:388 [PMID: 24422108]
  112. Genes (Basel). 2019 Aug 21;10(9): [PMID: 31438591]
  113. Bone. 2018 Aug;113:29-40 [PMID: 29653293]
  114. J Cell Biochem. 2015 Oct;116(10):2139-45 [PMID: 25833316]
  115. J Bone Miner Res. 2018 Nov;33(11):2059-2070 [PMID: 30001457]
  116. Mol Cell Biol. 2011 Jul;31(14):3019-28 [PMID: 21576357]
  117. JBMR Plus. 2017 Nov 06;2(1):12-21 [PMID: 30283887]
  118. Neurogenetics. 2017 Dec;18(4):185-194 [PMID: 28842795]
  119. Bone. 2018 Sep;114:62-71 [PMID: 29883787]
  120. Am J Anat. 1986 Jul;176(3):287-303 [PMID: 3739952]
  121. Nat Genet. 2010 Jan;42(1):30-5 [PMID: 19915526]
  122. J Bone Miner Res. 2018 May;33(5):875-887 [PMID: 29329488]
  123. Perspect Biol Med. 1969 Winter;12(2):298-312 [PMID: 4304823]
  124. Am J Med Genet. 2001 Winter;106(4):282-93 [PMID: 11891680]
  125. Nature. 2013 Apr 25;496(7446):498-503 [PMID: 23594743]
  126. J Bone Miner Res. 2016 Mar;31(3):640-9 [PMID: 26348019]
  127. Eur J Hum Genet. 2020 Mar;28(3):324-332 [PMID: 31591517]
  128. Eur J Hum Genet. 2010 Dec;18(12):1310-4 [PMID: 20648051]
  129. Nat Rev Genet. 2016 Jan;17(1):19-32 [PMID: 26593421]
  130. JBMR Plus. 2018 Apr 16;2(4):235-239 [PMID: 30283904]
  131. J Transl Med. 2018 Apr 17;16(1):103 [PMID: 29665811]
  132. Trends Cell Biol. 2011 Mar;21(3):168-76 [PMID: 21183349]
  133. Science. 2015 Feb 27;347(6225):938-40 [PMID: 25722392]
  134. Bone. 2017 Aug;101:96-103 [PMID: 28461254]
  135. Nat Genet. 2019 Feb;51(2):258-266 [PMID: 30598549]
  136. Bone. 2019 Oct;127:228-243 [PMID: 31085352]
  137. Nat Commun. 2012;3:1218 [PMID: 23169059]
  138. Proc Natl Acad Sci U S A. 1983 May;80(9):2752-6 [PMID: 6405388]

Word Cloud

Created with Highcharts 10.0.0humangenesskeletalmousedisordersmodelsgeneticphenotypesgenemutationsproteinsmimicmiceSkeletalnosologyresultPubMedidentifiedmutantMouseInternational441rareRNA260transgenicobserved249weblinks11successfullystudieswillbone2019DysplasiaSocietyupdatelistscodeenzymes33%scaffolding18%signaltransduction16%transcriptionfactors14%cilia8%extracellularmatrix5%membranetransporters4%includeaggrecanopathieschannelopathiesciliopathiescohesinopathieslaminopathieslinkeropathieslysosomalstoragediseasesprotein-foldingsplicingdefectsribosomopathiesgoalevaluatingabilityliteraturesearchexaminedincludedspontaneousENU-inducedmutantsglobalconditionalknockoutsover-expressionspecificbase-pairsubstitutionsX-linkedsmallnuclearcomponentminorspliceosomehomologsmimicking96%comparisonspossiblesupplementaltablespreadsheetformatprovidesrepresentativepublicationsMutationssimilarhomologousdiscrepanciescanfailureexactobviouscommonalitiesamongBodyBMDand/orradiologicdysmorphology28PhenotypingConsortiumIMPCForwardgeneticsusingENUmutagenesis37Sincemanyinvolvehypomorphicgain-of-functiondominant-negativeintronicfutureundoubtedlyutilizeCRISPR/Cas9technologyexaminemodifiedexactlyvariantsequencesMutantincreasinglyemployeddrugdevelopmentdesignedtreatSIGNIFICANCE:GreatprogressmadeidentifyingresponsibleaffectingmassarchitecturemineralizationstrengthrevieworganizesdataregardheredityfunctionmolecularpathwaysfidelityrelevantcitationssuccessfulprovidedHighFidelityModelsMimickingHumanGeneticDisordersdiseasedysplasiaskeletome

Similar Articles

Cited By