Soybean Stem Canker Caused by ; Pathogen Diversity, Colonization Process, and Plant Defense Activation.

Eilyn Mena, Silvina Stewart, Marcos Montesano, Inés Ponce de León
Author Information
  1. Eilyn Mena: Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
  2. Silvina Stewart: Sección Protección Vegetal, Instituto Nacional de Investigación Agropecuaria, La Estanzuela, Uruguay.
  3. Marcos Montesano: Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
  4. Inés Ponce de León: Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.

Abstract

Soybean is an important crop in South America, and its production is limited by fungal diseases caused by species from the genus , including seed decay, pod and stem blight, and soybean stem canker (SSC). In this study, we focused on species isolated from soybean plants with SSC lesions in different parts of Uruguay. diversity was determined by sequencing the internal transcribed spacer (ITS) regions of ribosomal RNA and a partial region of the translation elongation factor 1-alpha gene (TEF1α). Phylogenetic analysis showed that the isolates belong to five defined groups of species, and being the most predominant species present in stem canker lesions. Due to the importance of as the causal agent of SSC in the region and other parts of the world, we further characterized the interaction of this pathogen with soybean. Based on genetic diversity of isolates evaluated with inter-sequence single repetition (ISSR), three different isolates were selected for pathogenicity assays. Differences in virulence were observed among the selected isolates on susceptible soybean plants. Further inspection of the infection and colonization process showed that hyphae are associated with trichomes in petioles, leaves, and stems, acting probably as physical adhesion sites of the hyphae. colonized the stem rapidly reaching the phloem and the xylem at 72 h post-inoculation (hpi), and after 96 hpi, the stem was heavily colonized. Infected soybean plants induce reinforcement of the cell walls, evidenced by incorporation of phenolic compounds. In addition, several defense genes were induced in -inoculated stems, including those encoding a pathogenesis-related protein-1 (PR-1), a PR-10, a β-1,3-glucanase, two chitinases, two lipoxygenases, a basic peroxidase, a defensin, a phenylalanine-ammonia lyase, and a chalcone synthase. This study provides new insights into the interaction of soybean with , an important pathogen causing SSC, and provides information on the activation of plant defense responses.

Keywords

References

  1. Plant Dis. 1997 Oct;81(10):1215 [PMID: 30861718]
  2. Plant Dis. 2001 Jan;85(1):95 [PMID: 30832081]
  3. Appl Microbiol Biotechnol. 2012 Jan;93(2):807-14 [PMID: 22113560]
  4. Plant J. 2002 Feb;29(3):257-68 [PMID: 11844104]
  5. Front Plant Sci. 2013 Apr 23;4:97 [PMID: 23630534]
  6. Mol Phylogenet Evol. 2005 Apr;35(1):60-75 [PMID: 15737582]
  7. Eukaryot Cell. 2010 Oct;9(10):1495-503 [PMID: 20802018]
  8. Nature. 2010 Mar 18;464(7287):367-73 [PMID: 20237561]
  9. J Mol Evol. 1980 Dec;16(2):111-20 [PMID: 7463489]
  10. Plant Dis. 1997 Jan;81(1):107-110 [PMID: 30870925]
  11. Fungal Biol. 2015 May;119(5):383-407 [PMID: 25937066]
  12. Funct Integr Genomics. 2008 Nov;8(4):341-59 [PMID: 18414911]
  13. PeerJ. 2017 Mar 28;5:e3120 [PMID: 28367371]
  14. BMC Plant Biol. 2006 Nov 03;6:26 [PMID: 17083738]
  15. Plant Dis. 2016 Aug;100(8):1669-1676 [PMID: 30686243]
  16. Plant Dis. 1997 Oct;81(10):1143-1149 [PMID: 30861709]
  17. Mol Biol Evol. 2008 Jul;25(7):1253-6 [PMID: 18397919]
  18. Front Plant Sci. 2014 May 28;5:228 [PMID: 24904623]
  19. PLoS One. 2015 Oct 16;10(10):e0140364 [PMID: 26474489]
  20. Plant Dis. 1999 Nov;83(11):1033-1038 [PMID: 30841272]
  21. Phytopathology. 1999 Sep;89(9):796-804 [PMID: 18944708]
  22. Appl Environ Microbiol. 2005 Jun;71(6):2987-98 [PMID: 15932994]
  23. J Vis Exp. 2012 Mar 29;(61): [PMID: 22491175]
  24. BMC Genomics. 2017 Sep 5;18(1):688 [PMID: 28870170]
  25. Persoonia. 2011 Dec;27:9-19 [PMID: 22403474]
  26. Theor Appl Genet. 2005 May;110(8):1429-38 [PMID: 15815926]
  27. Plant Dis. 1999 Nov;83(11):1071 [PMID: 30841283]
  28. Plant Physiol. 2016 Mar;170(3):1420-34 [PMID: 26747284]
  29. Phytopathology. 1998 Dec;88(12):1306-14 [PMID: 18944833]
  30. Persoonia. 2011 Dec;27:80-9 [PMID: 22403478]
  31. Fungal Biol. 2010 Feb-Mar;114(2-3):255-70 [PMID: 20943136]
  32. Plant Dis. 2002 Dec;86(12):1403 [PMID: 30818452]
  33. Mol Plant Microbe Interact. 2005 Nov;18(11):1161-74 [PMID: 16353551]
  34. PLoS One. 2018 Nov 15;13(11):e0207438 [PMID: 30440039]
  35. Mol Plant Microbe Interact. 2004 Oct;17(10):1051-62 [PMID: 15497398]
  36. Plant Dis. 2019 Apr;103(4):677-684 [PMID: 30742552]
  37. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  38. PLoS One. 2014 May 30;9(5):e98311 [PMID: 24879418]
  39. Plant Physiol. 2010 Feb;152(2):787-96 [PMID: 19965966]
  40. Phytopathology. 2003 Feb;93(2):136-46 [PMID: 18943127]
  41. Plant Physiol. 2005 Apr;137(4):1345-53 [PMID: 15778457]
  42. Nucleic Acids Res. 2002 Jan 1;30(1):325-7 [PMID: 11752327]
  43. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  44. Front Plant Sci. 2013 May 24;4:155 [PMID: 23745126]
  45. Nucleic Acids Res. 1989 Dec 11;17(23):10128 [PMID: 2602131]
  46. Trends Plant Sci. 2002 Jul;7(7):315-22 [PMID: 12119169]
  47. J Eukaryot Microbiol. 2010 Mar-Apr;57(2):206-12 [PMID: 20113378]
  48. Plant Physiol. 2011 Sep;157(1):355-71 [PMID: 21791600]
  49. Annu Rev Phytopathol. 2006;44:135-62 [PMID: 16602946]
  50. Planta. 2009 Aug;230(3):569-79 [PMID: 19551405]
  51. Mol Plant Microbe Interact. 2018 Sep;31(9):871-888 [PMID: 29781762]
  52. Front Plant Sci. 2017 May 12;8:781 [PMID: 28553307]
  53. Phytopathology. 2002 Nov;92(11):1245-52 [PMID: 18944251]
  54. Persoonia. 2015 Dec;35:39-49 [PMID: 26823627]
  55. Plant Physiol. 2007 Jun;144(2):582-7 [PMID: 17556521]

Word Cloud

Created with Highcharts 10.0.0soybeanstemspeciesSSCisolatescankerplantspathogendefenseSoybeanimportantincludingstudylesionsdifferentpartsdiversityinternaltranscribedspacerITSribosomalRNAregiontranslationelongationfactor1-alphageneTEF1αshowedinteractionselectedcolonizationhyphaestemscolonizedhpicellgenestwoprovidescropSouthAmericaproductionlimitedfungaldiseasescausedgenusseeddecaypodblightfocusedisolatedUruguaydeterminedsequencingregionspartialPhylogeneticanalysisbelongfivedefinedgroupspredominantpresentDueimportancecausalagentworldcharacterizedBasedgeneticevaluatedinter-sequencesinglerepetitionISSRthreepathogenicityassaysDifferencesvirulenceobservedamongsusceptibleinspectioninfectionprocessassociatedtrichomespetiolesleavesactingprobablyphysicaladhesionsitesrapidlyreachingphloemxylem72hpost-inoculation96heavilyInfectedinducereinforcementwallsevidencedincorporationphenoliccompoundsadditionseveralinduced-inoculatedencodingpathogenesis-relatedprotein-1PR-1PR-10β-13-glucanasechitinaseslipoxygenasesbasicperoxidasedefensinphenylalanine-ammonialyasechalconesynthasenewinsightscausinginformationactivationplantresponsesStemCankerCausedPathogenDiversityColonizationProcessPlantDefenseActivationDiaporthecaulivorawalldiseasesymptomsrDNA

Similar Articles

Cited By