Inhomogeneity of Interfacial Electric Fields at Vibrational Probes on Electrode Surfaces.

Zachary K Goldsmith, Maxim Secor, Sharon Hammes-Schiffer
Author Information
  1. Zachary K Goldsmith: Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.
  2. Maxim Secor: Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.
  3. Sharon Hammes-Schiffer: Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States.

Abstract

Electric fields control chemical reactivity in a wide range of systems, including enzymes and electrochemical interfaces. Characterizing the electric fields at electrode-solution interfaces is critical for understanding heterogeneous catalysis and associated energy conversion processes. To address this challenge, recent experiments have probed the response of the nitrile stretching frequency of 4-mercaptobenzonitrile (4-MBN) attached to a gold electrode to changes in the solvent and applied electrode potential. Herein, this system is modeled with periodic density functional theory using a multilayer dielectric continuum treatment of the solvent and at constant applied potentials. The impact of the solvent dielectric constant and the applied electrode potential on the nitrile stretching frequency computed with a grid-based method is in qualitative agreement with the experimental data. In addition, the interfacial electrostatic potentials and electric fields as a function of applied potential were calculated directly with density functional theory. Substantial spatial inhomogeneity of the interfacial electric fields was observed, including oscillations in the region of the molecular probe attached to the electrode. These simulations highlight the microscopic inhomogeneity of the electric fields and the role of molecular polarizability at electrode-solution interfaces, thereby demonstrating the limitations of mean-field models and providing insights relevant to the interpretation of vibrational Stark effect experiments.

References

  1. Nat Chem. 2016 Nov 22;8(12):1091-1098 [PMID: 27874869]
  2. Biochemistry. 2008 Feb 12;47(6):1588-98 [PMID: 18205401]
  3. Int J Mol Sci. 2012;13(6):7466-82 [PMID: 22837705]
  4. Science. 2014 Dec 19;346(6216):1510-4 [PMID: 25525245]
  5. J Phys Chem B. 2008 Nov 6;112(44):13991-4001 [PMID: 18855431]
  6. J Chem Phys. 2019 Jul 28;151(4):044109 [PMID: 31370555]
  7. J Chem Phys. 2012 Feb 14;136(6):064102 [PMID: 22360164]
  8. J Am Chem Soc. 2002 Mar 20;124(11):2408-9 [PMID: 11890768]
  9. J Chem Phys. 2019 Jan 28;150(4):041730 [PMID: 30709280]
  10. Phys Chem Chem Phys. 2008 Jul 7;10(25):3609-12 [PMID: 18563221]
  11. Phys Rev Lett. 2011 Oct 14;107(16):166102 [PMID: 22107406]
  12. Biochemistry. 2003 Oct 21;42(41):12050-5 [PMID: 14556636]
  13. J Phys Chem B. 2010 Oct 28;114(42):13536-44 [PMID: 20883003]
  14. J Am Chem Soc. 2018 Dec 19;140(50):17643-17655 [PMID: 30468391]
  15. Phys Rev Lett. 2018 Jun 15;120(24):246801 [PMID: 29957006]
  16. J Phys Chem B. 2011 Jun 16;115(23):7597-605 [PMID: 21608988]
  17. ACS Appl Mater Interfaces. 2018 Oct 3;10(39):33678-33683 [PMID: 30187745]
  18. Science. 2018 Jun 22;360(6395):1339-1342 [PMID: 29930134]
  19. Phys Chem Chem Phys. 2009 Oct 1;11(37):8119-32 [PMID: 19756266]
  20. J Phys Chem Lett. 2010 Feb 1;1(4):781-786 [PMID: 20436926]
  21. J Phys Chem Lett. 2018 Apr 19;9(8):1927-1930 [PMID: 29595987]
  22. J Phys Condens Matter. 2017 Oct 24;29(46):465901 [PMID: 29064822]
  23. J Am Chem Soc. 2013 Jan 16;135(2):717-25 [PMID: 23210919]
  24. J Am Chem Soc. 2017 Feb 15;139(6):2369-2378 [PMID: 28103437]
  25. Annu Rev Phys Chem. 1997;48:213-42 [PMID: 9348658]
  26. J Am Chem Soc. 2019 Oct 2;141(39):15524-15531 [PMID: 31433173]
  27. Annu Rev Biochem. 2017 Jun 20;86:387-415 [PMID: 28375745]
  28. J Chem Phys. 2016 Jul 7;145(1):014504 [PMID: 27394114]
  29. Chem Rev. 2006 Aug;106(8):3210-35 [PMID: 16895325]
  30. J Chem Phys. 2019 Jan 28;150(4):041706 [PMID: 30709274]
  31. J Chem Phys. 2014 Feb 28;140(8):084106 [PMID: 24588147]
  32. J Phys Chem B. 2008 May 22;112(20):6301-3 [PMID: 18438998]
  33. J Chem Phys. 2016 Aug 28;145(8):084901 [PMID: 27586940]
  34. J Chem Phys. 2017 Mar 21;146(11):114104 [PMID: 28330356]
  35. Langmuir. 2004 Aug 3;20(16):6639-43 [PMID: 15274567]
  36. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 [PMID: 10062328]
  37. Acc Chem Res. 2015 Apr 21;48(4):998-1006 [PMID: 25799082]
  38. J Phys Condens Matter. 2009 Sep 30;21(39):395502 [PMID: 21832390]

Word Cloud

Created with Highcharts 10.0.0fieldselectricelectrodeappliedinterfacessolventpotentialElectricincludingelectrode-solutionexperimentsnitrilestretchingfrequencyattacheddensityfunctionaltheorydielectricconstantpotentialsinterfacialinhomogeneitymolecularcontrolchemicalreactivitywiderangesystemsenzymeselectrochemicalCharacterizingcriticalunderstandingheterogeneouscatalysisassociatedenergyconversionprocessesaddresschallengerecentprobedresponse4-mercaptobenzonitrile4-MBNgoldchangesHereinsystemmodeledperiodicusingmultilayercontinuumtreatmentimpactcomputedgrid-basedmethodqualitativeagreementexperimentaldataadditionelectrostaticfunctioncalculateddirectlySubstantialspatialobservedoscillationsregionprobesimulationshighlightmicroscopicrolepolarizabilitytherebydemonstratinglimitationsmean-fieldmodelsprovidinginsightsrelevantinterpretationvibrationalStarkeffectInhomogeneityInterfacialFieldsVibrationalProbesElectrodeSurfaces

Similar Articles

Cited By (15)