Near-Infrared Light Triggered-Release in Deep Brain Regions Using Ultra-photosensitive Nanovesicles.

Hejian Xiong, Xiuying Li, Peiyuan Kang, John Perish, Frederik Neuhaus, Jonathan E Ploski, Sven Kroener, Maria O Ogunyankin, Jeong Eun Shin, Joseph A Zasadzinski, Hui Wang, Paul A Slesinger, Andreas Zumbuehl, Zhenpeng Qin
Author Information
  1. Hejian Xiong: Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA. ORCID
  2. Xiuying Li: Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA.
  3. Peiyuan Kang: Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA.
  4. John Perish: School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA.
  5. Frederik Neuhaus: National Centre of Competence in Research in Chemical Biology, 30 quai Ernest Ansermet, 1211, Geneva 4, Switzerland.
  6. Jonathan E Ploski: School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA.
  7. Sven Kroener: School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, 75080, USA.
  8. Maria O Ogunyankin: Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
  9. Jeong Eun Shin: Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
  10. Joseph A Zasadzinski: Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.
  11. Hui Wang: Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, 02129, USA.
  12. Paul A Slesinger: Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029-5674, USA.
  13. Andreas Zumbuehl: Acthera Therapeutics Ltd., Peter Merian-Str. 45, 4052, Basel, Switzerland.
  14. Zhenpeng Qin: Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA. ORCID

Abstract

Remote and minimally-invasive modulation of biological systems with light has transformed modern biology and neuroscience. However, light absorption and scattering significantly prevents penetration to deep brain regions. Herein, we describe the use of gold-coated mechanoresponsive nanovesicles, which consist of liposomes made from the artificial phospholipid Rad-PC-Rad as a tool for the delivery of bioactive molecules into brain tissue. Near-infrared picosecond laser pulses activated the gold-coating on the surface of nanovesicles, creating nanomechanical stress and leading to near-complete vesicle cargo release in sub-seconds. Compared to natural phospholipid liposomes, the photo-release was possible at 40 times lower laser energy. This high photosensitivity enables photorelease of molecules down to a depth of 4 mm in mouse brain. This promising tool provides a versatile platform to optically release functional molecules to modulate brain circuits.

Keywords

References

  1. Lasers Med Sci. 2017 Nov;32(8):1909-1918 [PMID: 28900751]
  2. Science. 2018 Feb 9;359(6376):679-684 [PMID: 29439241]
  3. Small. 2017 Sep;13(36): [PMID: 28696524]
  4. Curr Opin Neurobiol. 1996 Jun;6(3):379-86 [PMID: 8794086]
  5. Nature. 1998 Oct 15;395(6703):645-8 [PMID: 9790183]
  6. Nat Commun. 2014 Apr 03;5:3546 [PMID: 24699423]
  7. Nat Cell Biol. 2010 Apr;12(4):341-50 [PMID: 20305650]
  8. J Control Release. 2010 Jun 1;144(2):151-8 [PMID: 20156498]
  9. J Biomed Opt. 2013 Jul;18(7):075001 [PMID: 23831713]
  10. Nat Commun. 2019 Mar 12;10(1):952 [PMID: 30862827]
  11. Chem Soc Rev. 2019 Jan 2;48(1):38-71 [PMID: 30387803]
  12. Nat Nanotechnol. 2018 Mar;13(3):260-266 [PMID: 29459654]
  13. J Control Release. 2019 Mar 28;298:154-176 [PMID: 30742854]
  14. Nat Med. 2014 Jul;20(7):778-784 [PMID: 24880615]
  15. ACS Nano. 2010 Apr 27;4(4):2109-23 [PMID: 20307085]
  16. Angew Chem Int Ed Engl. 2019 Dec 9;58(50):18197-18201 [PMID: 31566854]
  17. Phys Med Biol. 2013 Jun 7;58(11):R37-61 [PMID: 23666068]
  18. Annu Rev Neurosci. 2019 Jul 8;42:271-293 [PMID: 30939100]
  19. Cell. 2015 Jul 16;162(2):246-257 [PMID: 26186186]
  20. Neuron. 2017 Nov 1;96(3):572-603 [PMID: 29096074]
  21. J Am Chem Soc. 2016 Jul 27;138(29):9049-52 [PMID: 27404507]
  22. Cell Calcium. 2001 Jul;30(1):49-57 [PMID: 11396987]
  23. Adv Funct Mater. 2017 Mar 17;27(11): [PMID: 29176940]
  24. Adv Funct Mater. 2018 Mar 21;28(12): [PMID: 37829558]
  25. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7661-5 [PMID: 7689225]
  26. ACS Nano. 2018 Feb 27;12(2):1747-1759 [PMID: 29376340]
  27. Nat Rev Mater. 2017 Feb;2(2): [PMID: 31448131]
  28. Angew Chem Int Ed Engl. 2018 Oct 8;57(41):13484-13488 [PMID: 30109772]
  29. Neuron. 2018 Jun 6;98(5):1031-1041.e5 [PMID: 29804920]
  30. Angew Chem Int Ed Engl. 2018 Sep 10;57(37):11993-11997 [PMID: 30048030]
  31. Adv Drug Deliv Rev. 2019 Jan 1;138:117-132 [PMID: 30315833]
  32. Mater Today Bio. 2019 Apr 02;1:100003 [PMID: 32159138]
  33. ACS Nano. 2019 Jan 22;13(1):544-551 [PMID: 30592595]
  34. Nat Methods. 2007 Aug;4(8):619-28 [PMID: 17664946]
  35. Science. 2015 Mar 27;347(6229):1477-80 [PMID: 25765068]
  36. Curr Med Chem. 2019;26(8):1406-1422 [PMID: 29932026]
  37. Chem Rec. 2018 Dec;18(12):1708-1716 [PMID: 30040190]
  38. Comput Methods Programs Biomed. 1995 Jul;47(2):131-46 [PMID: 7587160]
  39. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15719-24 [PMID: 26644576]
  40. J Am Chem Soc. 2008 Jul 2;130(26):8175-7 [PMID: 18543914]
  41. Langmuir. 2008 Dec 16;24(24):14166-71 [PMID: 19360963]
  42. Nat Nanotechnol. 2009 Nov;4(11):710-1 [PMID: 19898521]
  43. Nat Nanotechnol. 2012 Aug;7(8):536-43 [PMID: 22683843]
  44. Chem Soc Rev. 2012 Feb 7;41(3):1191-217 [PMID: 21947414]
  45. ACS Nano. 2016 Apr 26;10(4):4828-34 [PMID: 26799662]
  46. Adv Healthc Mater. 2019 Mar;8(6):e1801132 [PMID: 30633858]
  47. Langmuir. 2018 Mar 13;34(10):3215-3220 [PMID: 29455537]
  48. Exp Neurobiol. 2017 Apr;26(2):71-81 [PMID: 28442943]

Grants

  1. R01 HL051177/NHLBI NIH HHS
  2. K99 EB023993/NIBIB NIH HHS
  3. R00 EB023993/NIBIB NIH HHS
  4. R01 MH111499/NIMH NIH HHS
  5. RF1 NS110499/NINDS NIH HHS

MeSH Term

Animals
Biomechanical Phenomena
Brain
Gold
Infrared Rays
Mice
Nanotechnology
Phospholipids

Chemicals

Phospholipids
Gold

Word Cloud

Created with Highcharts 10.0.0brainlightmoleculesmechanoresponsivenanovesiclesliposomesphospholipidtoollaserreleaseRemoteminimally-invasivemodulationbiologicalsystemstransformedmodernbiologyneuroscienceHoweverabsorptionscatteringsignificantlypreventspenetrationdeepregionsHereindescribeusegold-coatedconsistmadeartificialRad-PC-RaddeliverybioactivetissueNear-infraredpicosecondpulsesactivatedgold-coatingsurfacecreatingnanomechanicalstressleadingnear-completevesiclecargosub-secondsComparednaturalphoto-releasepossible40timeslowerenergyhighphotosensitivityenablesphotoreleasedepth4 mmmousepromisingprovidesversatileplatformopticallyfunctionalmodulatecircuitsNear-InfraredLightTriggered-ReleaseDeepBrainRegionsUsingUltra-photosensitiveNanovesiclesgoldshellvesiclesnear-infrareduncaging

Similar Articles

Cited By