Environmental Carcinogenesis at the Single-Cell Level.

Gregory Chang, Kohei Saeki, Hitomi Mori, Shiuan Chen
Author Information
  1. Gregory Chang: Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California.
  2. Kohei Saeki: Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California.
  3. Hitomi Mori: Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California.
  4. Shiuan Chen: Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, California. schen@coh.org.

Abstract

Elucidating the mechanisms behind how exposure to environmental chemicals can lead to cancer is not easy due to the complex natures of these compounds and the challenges to establish biologically relevant experimental models to study them. Environmental chemicals often present selective mechanisms of action on different cell types and can be involved in the modulation of targeted cells and their microenvironment, including immune cells. Currently, the limitations of traditional epidemiologic correlation analyses, cell-based assays, and animal models are that they are unable to comprehensively examine cellular heterogeneity and the tissue-selective influences. To this end, we propose utilizing single-cell RNA-sequencing (scRNA-seq) to more effectively capture the subtle and complex effects of environmental chemicals and how their exposure could lead to cancer. scRNA-seq's capabilities for studying gene expression level data at a significantly higher resolution relative to bulk RNA-sequencing (RNA-seq) enable studies to evaluate how environmental chemicals regulate gene transcription on different cell types as well as how these compounds impact signaling pathways and interactions between cells in the tissue microenvironment. These studies will be valuable for evaluating environmental chemicals' carcinogenic properties at the individual cell level.

References

  1. Sci Total Environ. 2016 Jan 15;541:784-794 [PMID: 26433335]
  2. Nat Commun. 2017 Dec 11;8(1):2128 [PMID: 29225342]
  3. FEBS J. 2019 Aug;286(15):2830-2869 [PMID: 30908868]
  4. Nat Biotechnol. 2018 Oct 29;: [PMID: 30371680]
  5. Stem Cell Reports. 2019 Apr 9;12(4):772-786 [PMID: 30827876]
  6. Commun Biol. 2019 Aug 9;2:306 [PMID: 31428694]
  7. Cell Syst. 2019 Apr 24;8(4):329-337.e4 [PMID: 30954475]
  8. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  9. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  10. Nat Protoc. 2016 Mar;11(3):499-524 [PMID: 26890679]
  11. Nucleic Acids Res. 2019 Jun 20;47(11):e66 [PMID: 30923815]
  12. Clin Cancer Res. 2020 Feb 15;26(4):935-944 [PMID: 31558476]
  13. Nat Commun. 2015 Jul 22;6:7866 [PMID: 26198319]
  14. Toxicol Sci. 2019 Jun 1;169(2):380-398 [PMID: 30796839]
  15. BMC Bioinformatics. 2012 May 08;13:86 [PMID: 22568884]
  16. Science. 2016 Jul 1;353(6294):78-82 [PMID: 27365449]
  17. Exp Mol Med. 2018 Aug 7;50(8):96 [PMID: 30089861]
  18. Nat Commun. 2018 Dec 4;9(1):5150 [PMID: 30514914]
  19. Commun Biol. 2019 Nov 5;2:406 [PMID: 31701034]
  20. Arch Biochem Biophys. 2019 Dec 15;678:108116 [PMID: 31568751]
  21. Nat Commun. 2019 Jan 23;10(1):390 [PMID: 30674886]
  22. J Steroid Biochem Mol Biol. 2011 Oct;127(1-2):27-34 [PMID: 21605673]
  23. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3010-4 [PMID: 1557406]
  24. Nat Commun. 2017 Dec 11;8(1):2032 [PMID: 29230012]
  25. Cell. 2018 Aug 23;174(5):1293-1308.e36 [PMID: 29961579]
  26. Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19802-7 [PMID: 24248345]
  27. Nat Commun. 2017 Nov 20;8(1):1627 [PMID: 29158510]
  28. Cancer Cell. 2005 Jan;7(1):17-23 [PMID: 15652746]
  29. Trends Immunol. 2015 Apr;36(4):265-76 [PMID: 25797516]
  30. Nat Commun. 2017 Jun 01;8:15599 [PMID: 28569836]
  31. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  32. Nat Commun. 2017 May 05;8:15081 [PMID: 28474673]
  33. Nat Rev Clin Oncol. 2018 Feb;15(2):81-94 [PMID: 29115304]
  34. Breast Cancer Res. 2019 Aug 20;21(1):96 [PMID: 31429809]
  35. Genome Med. 2011 May 31;3(5):31 [PMID: 21631906]
  36. Nat Methods. 2017 Sep 29;14(10):935-936 [PMID: 28960196]
  37. Cell Signal. 2014 Apr;26(4):777-83 [PMID: 24412753]
  38. Nat Methods. 2014 Jan;11(1):25-7 [PMID: 24524134]
  39. Nat Rev Immunol. 2017 Sep;17(9):559-572 [PMID: 28555670]
  40. Front Immunol. 2018 Oct 23;9:2425 [PMID: 30405621]
  41. Nat Rev Mol Cell Biol. 2011 Aug 10;12(9):581-93 [PMID: 21829222]
  42. Clin Cancer Res. 2019 May 15;25(10):2996-3005 [PMID: 30718356]
  43. Environ Health Perspect. 2000 May;108(5):387-92 [PMID: 10811563]
  44. Methods Mol Biol. 2018;1712:87-95 [PMID: 29224070]

Grants

  1. P30 CA033572/NCI NIH HHS
  2. U01 ES026137/NIEHS NIH HHS

MeSH Term

Animals
Carcinogenesis
Environmental Exposure
Humans
Mice
Single-Cell Analysis

Word Cloud

Created with Highcharts 10.0.0environmentalchemicalscellcellsmechanismsexposurecanleadcancercomplexcompoundsmodelsEnvironmentaldifferenttypesmicroenvironmentRNA-sequencinggenelevelstudiesElucidatingbehindeasyduenatureschallengesestablishbiologicallyrelevantexperimentalstudyoftenpresentselectiveactioninvolvedmodulationtargetedincludingimmuneCurrentlylimitationstraditionalepidemiologiccorrelationanalysescell-basedassaysanimalunablecomprehensivelyexaminecellularheterogeneitytissue-selectiveinfluencesendproposeutilizingsingle-cellscRNA-seqeffectivelycapturesubtleeffectsscRNA-seq'scapabilitiesstudyingexpressiondatasignificantlyhigherresolutionrelativebulkRNA-seqenableevaluateregulatetranscriptionwellimpactsignalingpathwaysinteractionstissuewillvaluableevaluatingchemicals'carcinogenicpropertiesindividualCarcinogenesisSingle-CellLevel

Similar Articles

Cited By