In vitro and intracellular activities of frog skin temporins against Legionella pneumophila and its eukaryotic hosts.

Alexandre Crépin, Jean-François Jégou, Sonia André, Florine Ecale, Anastasia Croitoru, Anne Cantereau, Jean-Marc Berjeaud, Ali Ladram, Julien Verdon
Author Information
  1. Alexandre Crépin: Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, POITIERS, Cedex 9, France.
  2. Jean-François Jégou: Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, UPRES EA4331, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, POITIERS, Cedex 9, France.
  3. Sonia André: Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, BIOSIPE, F-75252, Paris, France.
  4. Florine Ecale: Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, POITIERS, Cedex 9, France.
  5. Anastasia Croitoru: Laboratoire d'Optique et Biosciences, INSERM U1182 - CNRS UMR7645, Ecole polytechnique, 91128, PALAISEAU, Cedex, France.
  6. Anne Cantereau: Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, POITIERS, Cedex 9, France.
  7. Jean-Marc Berjeaud: Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, POITIERS, Cedex 9, France.
  8. Ali Ladram: Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, BIOSIPE, F-75252, Paris, France.
  9. Julien Verdon: Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, 1 Rue Georges Bonnet, TSA 51106, 86073, POITIERS, Cedex 9, France. julien.verdon@univ-poitiers.fr. ORCID

Abstract

Temporin-SHa (SHa) is a small cationic host defence peptide (HDP) produced in skin secretions of the Sahara frog Pelophylax saharicus. This peptide has a broad-spectrum activity, efficiently targeting bacteria, parasites and viruses. Noticeably, SHa has demonstrated an ability to kill Leishmania infantum parasites (amastigotes) within macrophages. Recently, an analog of SHa with an increased net positive charge, named [K]SHa, has been designed to improve those activities. SHa and [K]SHa were both shown to exhibit leishmanicidal activity mainly by permeabilization of cell membranes but could also induce apoptotis-like death. Temporins are usually poorly active against Gram-negative bacteria whereas many of these species are of public health interest. Among them, Legionella pneumophila, the etiological agent of Legionnaire's disease, is of major concern. Indeed, this bacterium adopts an intracellular lifestyle and replicate inside alveolar macrophages likewise inside its numerous protozoan hosts. Despite several authors have studied the antimicrobial activity of many compounds on L. pneumophila released from host cells, nothing is known about activity on intracellular L. pneumophila within their hosts, and subsequently mechanisms of action that could be involved. Here, we showed for the first time that SHa and [K]SHa were active towards several species of Legionella. Both peptides displayed bactericidal activity and caused a loss of the bacterial envelope integrity leading to a rapid drop in cell viability. Regarding amoebae and THP-1-derived macrophages, SHa was less toxic than [K]SHa and exhibited low half maximal lethal concentrations (LC). When used at non-toxic concentration (6.25 µM), SHa killed more than 90% L. pneumophila within amoebae and around 50% within macrophages. Using SHa labeled with the fluorescent dye Cy5, we showed an evenly diffusion within cells except in vacuoles. Moreover, SHa was able to enter the nucleus of amoebae and accumulate in the nucleolus. This subcellular localization seemed specific as macrophages nucleoli remained unlabeled. Finally, no modifications in the expression of cytokines and HDPs were recorded when macrophages were treated with 6.25 µM SHa. By combining all data, we showed that temporin-SHa decreases the intracellular L. pneumophila load within amoebae and macrophages without being toxic for eukaryotic cells. This peptide was also able to reach the nucleolus of amoebae but was not capable to penetrate inside vacuoles. These data are in favor of an indirect action of SHa towards intracellular Legionella and make this peptide a promising template for further developments.

References

  1. Ladram, A. & Nicolas, P. Antimicrobial peptides from frog skin: biodiversity and therapeutic promises. Front. Biosci. Landmark 21, 1341–1371 (2016). [DOI: 10.2741/4461]
  2. Hancock, R. E. W., Haney, E. F. & Gill, E. E. The immunology of host defence peptides: Beyond antimicrobial activity. Nat. Rev. Immunol. 16, 321–334 (2016). [PMID: 27087664]
  3. Haney, E. F., Straus, S. K. & Hancock, R. E. W. Reassessing the Host Defense Peptide Landscape. Front. Chem. 7, 43 (2019). [PMID: 30778385]
  4. Pantic, J. M. et al. The potential of frog skin-derived peptides for development into therapeutically-valuable immunomodulatory agents. Molecules 22, 2071 (2017). [>PMCID: ]
  5. Conlon, J. M., Mechkarska, M., Lukic, M. L. & Flatt, P. R. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides 57, 67–77 (2014). [PMID: 24793775]
  6. Seo, M. D., Won, H. S., Kim, J. H., Mishig-Ochir, T. & Lee, B. J. Antimicrobial peptides for therapeutic applications: A review. Molecules 17, 12276–12286 (2012). [PMID: 23079498]
  7. Mangoni, M. L. & Shai, Y. Short native antimicrobial peptides and engineered ultrashort lipopeptides: Similarities and differences in cell specificities and modes of action. Cell. Mol. Life Sci. 68, 2267–2280 (2011). [PMID: 21573781]
  8. Mangoni, M. L., Di Grazia, A., Cappiello, F., Casciaro, B. & Luca, V. Naturally Occurring Peptides from Rana temporaria: Antimicrobial Properties and More. Curr. Top. Med. Chem. 16, 54–64 (2016). [PMID: 26139114]
  9. Abbassi, F. et al. Temporin-SHf, a new type of Phe-rich and hydrophobic ultrashort antimicrobial peptide. J. Biol. Chem. 285, 16880–16892 (2010). [PMID: 20308076]
  10. Abbassi, F. et al. Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide. Biochimie 95, 388–399 (2013). [PMID: 23116712]
  11. Rinaldi, A. C. & Conlon, J. M. Temporins. Handbook of Biologically Active Peptides (Elsevier Inc.)., https://doi.org/10.1016/C2010-0-66490-X (2013).
  12. Wang, G., Li, X. & Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 44, D1087–D1093 (2016). [DOI: 10.1093/nar/gkv1278]
  13. Wade, D. et al. Antibacterial activities of temporin A analogs. FEBS Lett. 479, 6–9 (2000). [PMID: 10940378]
  14. Mangoni, M. L. et al. Structure-activity relationship, conformational and biological studies of temporin L analogues. J. Med. Chem. 54, 1298–1307 (2011). [PMID: 21319749]
  15. Urbán, E., Nagy, E., Pál, T., Sonnevend, Á. & Conlon, J. M. Activities of four frog skin-derived antimicrobial peptides (temporin-1DRa, temporin-1Va and the melittin-related peptides AR-23 and RV-23) against anaerobic bacteria. Int. J. Antimicrob. Agents 29, 317–321 (2007). [PMID: 17196372]
  16. Abbassi, F. et al. Isolation, characterization and molecular cloning of new temporins from the skin of the North African ranid Pelophylax saharica. Peptides 29, 1526–1533 (2008). [PMID: 18584916]
  17. Raja, Z. et al. Insight into the mechanism of action of temporin-SHa, a new broad-spectrum antiparasitic and antibacterial agent. PLoS One 12, e0174024 (2017). [PMID: 28319176]
  18. Grieco, P. et al. The effect of d-amino acid substitution on the selectivity of temporin L towards target cells: Identification of a potent anti-Candida peptide. Biochim. Biophys. Acta - Biomembr. 1828, 652–660 (2013). [DOI: 10.1016/j.bbamem.2012.08.027]
  19. Conlon, J. M. et al. Effect of aminoisobutyric acid (Aib) substitutions on the antimicrobial and cytolytic activities of the frog skin peptide, temporin-1DRa. Peptides 28, 2075–2080 (2007). [PMID: 17767978]
  20. André, S. et al. Structure-Activity Relationship-based Optimization of Small Temporin-SHf Analogs with Potent Antibacterial Activity. ACS Chem. Biol. 10, 2257–2266 (2015). [PMID: 26181487]
  21. Mangoni, M. L. et al. Temporins, small antimicrobial peptides with leishmanicidal activity. J. Biol. Chem. 280, 984–990 (2005). [PMID: 15513914]
  22. Eggimann, G. A. et al. The role of phosphoglycans in the susceptibility of Leishmania mexicana to the temporin family of anti-microbial peptides. Molecules 20, 2775–2785 (2015). [PMID: 25668079]
  23. Marcocci, M. E. et al. The amphibian antimicrobial peptide temporin b inhibits in vitro herpes simplex virus 1 infection. Antimicrob. Agents Chemother. 62, e02367–17 (2018). [PMID: 29483113]
  24. Roy, M. et al. Comparison of anti-viral activity of frog skin anti-microbial peptides temporin-sha and [K 3]SHa to LL-37 and temporin-Tb against herpes simplex virus type 1. Viruses 11, 77 (2019). [>PMCID: ]
  25. Alvar, J. et al. Leishmaniasis worldwide and global estimates of its incidence. Plos One 7, e35671 (2012). [PMID: 22693548]
  26. Chinchar, V. G. et al. Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology 323, 268–275 (2004). [PMID: 15193922]
  27. Grazia, A. D., Luca, V., Segev-zarko, L. T., Shai, Y. & Mangoni, L. Temporins A and B Stimulate Migration of HaCaT Keratinocytes and Kill Intracellular Staphylococcus aureus. Antimicrob. Agents Chemother. 58, 2520–2527 (2014). [PMID: 24514087]
  28. Newton, H. J., Ang, D. K. Y., Van Driel, I. R. & Hartland, E. L. Molecular pathogenesis of infections caused by Legionella pneumophila. Clin. Microbiol. Rev. 23, 274–298 (2010). [PMID: 20375353]
  29. Abu Khweek, A. & Amer, A. O. Factors mediating environmental biofilm formation by Legionella pneumophila. Front. Cell. Infect. Microbiol. 8, 38 (2018). [PMID: 29535972]
  30. Oliva, G., Sahr, T. & Buchrieser, C. The Life Cycle of L. pneumophila: Cellular Differentiation Is Linked to Virulence and Metabolism. Front. Cell. Infect. Microbiol. 8, 3 (2018). [PMID: 29404281]
  31. Berjeaud, J. M. et al. Legionella pneumophila: The paradox of a highly sensitive opportunistic waterborne pathogen able to persist in the environment. Front. Microbiol. 7, 486 (2016). [PMID: 27092135]
  32. Birteksoz-Tan, A. S., Zeybek, Z., Hacioglu, M., Savage, P. B. & Bozkurt-Guzel, C. In vitro activities of antimicrobial peptides and ceragenins against Legionella pneumophila. J. Antibiot. (Tokyo). 72, 291–297 (2019). [PMID: 30755738]
  33. Chen, Q. et al. Temporin A and Related Frog Antimicrobial Peptides Use Formyl Peptide Receptor-Like 1 as a Receptor to Chemoattract Phagocytes. J. Immunol. 173, 2652–2659 (2004). [PMID: 15294982]
  34. Mangoni, M. L. et al. Lipopolysaccharide, a key molecule involved in the synergism between temporins in inhibiting bacterial growth and in endotoxin neutralization. J. Biol. Chem. 283, 22907–22917 (2008). [PMID: 18550541]
  35. Srivastava, S., Kumar, A., Tripathi, A. K., Tandon, A. & Ghosh, J. K. Modulation of anti-endotoxin property of Temporin L by minor amino acid substitution in identified phenylalanine zipper sequence. Biochem. J. 473, 4045–4062 (2016). [PMID: 27609815]
  36. Oger, P. C., Piesse, C., Ladram, A. & Humblot, V. Engineering of antimicrobial surfaces by using temporin analogs to tune the biocidal/antiadhesive effect. Molecules 24, 814 (2019). [>PMCID: ]
  37. Lombana, A. et al. Temporin-SHa peptides grafted on gold surfaces display antibacterial activity. J. Pept. Sci. 20, 563–569 (2014). [PMID: 24919960]
  38. Grassi, L., Maisetta, G., Maccari, G., Esin, S. & Batoni, G. Analogs of the frog-skin antimicrobial peptide temporin 1Tb exhibit a wider spectrum of activity and a stronger antibiofilm potential as compared to the parental peptide. Front. Chem. 5, 24 (2017). [PMID: 28443279]
  39. Maisetta, G. et al. Anti-biofilm properties of the antimicrobial peptide temporin 1Tb and its ability, in combination with EDTA, to eradicate Staphylococcus epidermidis biofilms on silicone catheters. Biofouling 32, 787–800 (2016). [PMID: 27351824]
  40. Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S. & Pardesi, K. R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 10, 539 (2019). [PMID: 30988669]
  41. Chahin, A. & Opal, S. M. Severe Pneumonia Caused by Legionella pneumophila: Differential Diagnosis and Therapeutic Considerations. Infect. Dis. Clin. North Am. 31, 111–121 (2017). [PMID: 28159171]
  42. Ducarmon, Q. R. et al. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol. Mol. Biol. Rev. 83, e00007–19 (2019). [PMID: 31167904]
  43. Boamah, D. K., Zhou, G., Ensminger, A. W. & O’Connor, T. J. From many hosts, one accidental pathogen: The diverse protozoan hosts of Legionella. Front. Cell. Infect. Microbiol. 7, 477 (2017). [PMID: 29250488]
  44. Garduño, R. A., Garduño, E., Hiltz, M. & Hoffman, P. S. Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary-phase forms. Infect. Immun. 70, 6273–6283 (2002). [PMID: 12379706]
  45. Robertson, P., Abdelhady, H. & Garduño, R. A. The many forms of a pleomorphic bacterial pathogen-the developmental network of Legionella pneumophila. Front. Microbiol. 5, 670 (2014). [PMID: 25566200]
  46. Hughes, E. D., Byrne, B. G. & Swanson, M. S. A Two-Component System that Modulates Cyclic-di-GMP Metabolism Promotes Legionella pneumophila Differentiation and Viability in Low-Nutrient Conditions. J. Bacteriol., https://doi.org/10.1128/JB.00253-19 (2019).
  47. Gomez-Valero, L. & Buchrieser, C. Intracellular parasitism, the driving force of evolution of Legionella pneumophila and the genus Legionella. Genes Immun. 20, 394–402 (2019). [PMID: 31053752]
  48. Wang, C., Chuai, X. & Liang, M. Legionella feeleii: pneumonia or Pontiac fever? Bacterial virulence traits and host immune response. Med. Microbiol. Immunol. 208, 25–32 (2019). [PMID: 30386929]
  49. Isenman, H. L. et al. Legionnaires’ disease caused by Legionella longbeachae: Clinical features and outcomes of 107 cases from an endemic area. Respirology 21, 1292–1299 (2016). [PMID: 27199169]
  50. Verdon, J., Berjeaud, J.-M., Lacombe, C. & Héchard, Y. Characterization of anti-Legionella activity of warnericin RK and delta-lysin I from Staphylococcus warneri. Peptides 29, 978–984 (2008). [PMID: 18339450]
  51. Marchand, A. et al. Anti-Legionella activity of staphylococcal hemolytic peptides. Peptides 32, 845–851 (2011). [PMID: 21291938]
  52. Müller, A., Hacker, J. & Brand, B. C. Evidence for apoptosis of human macrophage-like HL-60 cells by Legionella pneumophila infection. Infect. Immun. 64, 4900–4906 (1996). [PMID: 8945524]
  53. Hägele, S., Hacker, J. & Brand, B. C. Legionella pneumophila kills human phagocytes but not protozoan host cells by inducing apoptotic cell death. FEMS Microbiol. Lett. 169, 51–58 (1998). [PMID: 9851034]
  54. Martin, R. M. et al. Principles of protein targeting to the nucleolus. Nucleus 6, 314–325 (2015). [PMID: 26280391]
  55. Musinova, Y. R., Kananykhina, E. Y., Potashnikova, D. M., Lisitsyna, O. M. & Sheval, E. V. A charge-dependent mechanism is responsible for the dynamic accumulation of proteins inside nucleoli. Biochim. Biophys. Acta - Mol. Cell Res. 1853, 101–110 (2015). [DOI: 10.1016/j.bbamcr.2014.10.007]
  56. Carmo-Fonseca, M., Mendes-Soares, L. & Campos, I. To be or not to be in the nucleolus. Nat. Cell Biol. 2, E107–E112 (2000). [PMID: 10854340]
  57. Raja, Z. et al. Structure, Antimicrobial Activities and Mode of Interaction with Membranes of Bovel Phylloseptins from the Painted-Belly Leaf Frog, Phyllomedusa sauvagii. Plos One 8, e70782 (2013). [PMID: 23967105]
  58. Verdon, J. et al. Armadillidin H, a glycine-rich peptide from the terrestrial crustacean Armadillidium vulgare, displays an unexpected wide antimicrobial spectrum with membranolytic activity. Front. Microbiol. 7, 1484 (2016). [PMID: 27713732]
  59. Pohin, M. et al. Development of a new model of reconstituted mouse epidermis and characterization of its response to proinflammatory cytokines. J. Tissue Eng. Regen. Med. 12, e1098–e1107 (2018). [PMID: 28477582]

MeSH Term

Acanthamoeba castellanii
Animals
Antimicrobial Cationic Peptides
Anura
Cell Line
Humans
Intracellular Space
Legionella pneumophila
Macrophages
Permeability
Skin

Chemicals

Antimicrobial Cationic Peptides
temporin

Word Cloud

Created with Highcharts 10.0.0SHamacrophageswithinpneumophilaactivityintracellularamoebaepeptide[K]SHaLegionellaLinsidehostscellsshowedhostskinfrogbacteriaparasitesactivitiescellalsoactivemanyspeciesseveralactiontowardstoxic625 µMvacuolesablenucleolusdataeukaryoticTemporin-SHasmallcationicdefenceHDPproducedsecretionsSaharaPelophylaxsaharicusbroad-spectrumefficientlytargetingvirusesNoticeablydemonstratedabilitykillLeishmaniainfantumamastigotesRecentlyanalogincreasednetpositivechargenameddesignedimproveshownexhibitleishmanicidalmainlypermeabilizationmembranesinduceapoptotis-likedeathTemporinsusuallypoorlyGram-negativewhereaspublichealthinterestAmongetiologicalagentLegionnaire'sdiseasemajorconcernIndeedbacteriumadoptslifestylereplicatealveolarlikewisenumerousprotozoanDespiteauthorsstudiedantimicrobialcompoundsreleasednothingknownsubsequentlymechanismsinvolvedfirsttimepeptidesdisplayedbactericidalcausedlossbacterialenvelopeintegrityleadingrapiddropviabilityRegardingTHP-1-derivedlessexhibitedlowhalfmaximallethalconcentrationsLCusednon-toxicconcentrationkilled90%around50%UsinglabeledfluorescentdyeCy5evenlydiffusionexceptMoreoverenternucleusaccumulatesubcellularlocalizationseemedspecificnucleoliremainedunlabeledFinallymodificationsexpressioncytokinesHDPsrecordedtreatedcombiningtemporin-SHadecreasesloadwithoutreachcapablepenetratefavorindirectmakepromisingtemplatedevelopmentsvitrotemporins

Similar Articles

Cited By