A Rationale for the Use of Clotted Vertebral Bone Marrow to Aid Tissue Regeneration Following Spinal Surgery.

F Salamanna, D Contartese, G Giavaresi, L Sicuro, G Barbanti Brodano, A Gasbarrini, M Fini
Author Information
  1. F Salamanna: Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy. francesca.salamanna@ior.it. ORCID
  2. D Contartese: Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
  3. G Giavaresi: Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
  4. L Sicuro: Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy. ORCID
  5. G Barbanti Brodano: Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
  6. A Gasbarrini: Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
  7. M Fini: Laboratory of Preclinical and Surgical Studies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.

Abstract

Vertebral body bone marrow aspirate (V-BMA), easily accessible simultaneously with the preparation of the site for pedicle screw insertion during spinal procedures, is becoming an increasingly used cell therapy approach in spinal surgery. However, the main drawbacks for V-BMA use are the lack of a standardized procedure and of a structural texture with the possibility of diffusion away from the implant site. The aim of this study was to evaluate, characterize and compare the biological characteristics of MSCs from clotted V-BMA and MSCs from whole and concentrate V-BMAs. MSCs from clotted V-BMA showed the highest cell viability and growth factors expression (TGF-β, VEGF-A, FGF2), the greatest colony forming unit (CFU) potency, cellular homogeneity, ability to differentiate towards the osteogenic (COL1AI, TNFRSF11B, BGLAP) and chondrogenic phenotype (SOX9) and the lowest ability to differentiate toward the adipogenic lineage (ADIPOQ) in comparison to all the other culture conditions. Additionally, results revealed that MSCs, differently isolated, expressed different level of HOX and TALE signatures and that PBX1 and MEIS3 were down-regulated in MSCs from clotted V-BMA in comparison to concentrated one. The study demonstrated for the first time that the cellular source inside the clotted V-BMA showed the best biological properties, representing an alternative and advanced cell therapy approach for patients undergoing spinal surgery.

References

  1. Bain, B. J. Bone marrow biopsy morbidity and mortality. Br. J. Haematol. 121(6), 949–51 (2003). [PMID: 12786808]
  2. Kitchel, S. H., Wang, M. Y. & Lauryssen, C. L. Techniques for aspirating bone marrow for use in spinal surgery. Neurosurg. 57(4 Suppl), 286–9 (2005).
  3. Imam, M. A. et al. A systematic review of the clinical applications and complications of bone marrow aspirate concentrate in management of bone defects and nonunions. Int. Orthop. 41(11), 2213–2220 (2017). [PMID: 28804813]
  4. Hernigou, P., Poignard, A., Manicom, O., Mathieu, G. & Rouard, H. The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J. Bone Jt. Surg. Br. 87(7), 896–902 (2005). [DOI: 10.1302/0301-620X.87B7.16289]
  5. Hernigou, P. et al. Allografts supercharged with bone-marrow-derived mesenchymal stem cells possess equivalent osteogenic capacity to that of autograft: a study with long-term follow-ups of human biopsies. Int. Orthop. 41(1), 127–132 (2017). [PMID: 27557954]
  6. Salamanna, F. et al. Mesenchymal Stem Cells for the Treatment of Spinal Arthrodesis: From Preclinical Research to Clinical Scenario. Stem Cell Int. 2017, 3537094 (2017).
  7. Schottel, P. C. & Warner, S. J. Role of Bone Marrow Aspirate in Orthopedic Trauma. Orthop. Clin. North. Am. 48(3), 311–321 (2017). [PMID: 28577780]
  8. Vaz, K. et al. Bone grafting options for lumbar spine surgery: a review examining clinical efficacy and complications. SAS J. 4(3), 75–86 (2010). [PMID: 25802654]
  9. Pesenti, S. et al. Bone substitutes in adolescent idiopathic scoliosis surgery using sublaminar bands: is it useful? A case-control study. Int. Orthop. 41(10), 2083–2090 (2017). [PMID: 28540414]
  10. Riley, R. S. et al. A pathologist’s perspective on bone marrow aspiration and biopsy: I. Performing a bone marrow examination. J. Clin. Lab. Anal. 18(2), 70–90 (2004). [PMID: 15065211]
  11. Konda, B. et al. Safe and successful bone marrow biopsy: an anatomical and CT-based cadaver study. Am. J. Hematol. 89(10), 943–6 (2014). [PMID: 24942104]
  12. Barbanti Brodano, G. et al. Mesenchymal stem cells derived from vertebrae (vMSCs) show best biological properties. Eur. Spine J. 22(Suppl 6), S979–84 (2013). [PMID: 24061975]
  13. Badrinath, R., Bohl, D. D., Hustedt, J. W., Webb, M. L. & Grauer, J. N. Only prolonged time from abstraction found to affect viable nucleated cell concentrations in vertebral body bone marrow aspirate. Spine J. 14(6), 990–5 (2014). [PMID: 24184640]
  14. Salamanna, F. et al. Biological Rationale for the Use of Vertebral Whole Bone Marrow in Spinal Surgery. Spine . 43(20), 1401–1410 (2018). [PMID: 29547459]
  15. Salamanna, F. et al. Bone marrow aspirate clot: A technical complication or a smart approach for musculoskeletal tissue regeneration? J. Cell Physiol. 233(4), 2723–2732 (2018). [PMID: 28639702]
  16. Lim, Z. X. H. et al. Autologous bone marrow clot as an alternative to autograft for bone defect healing. Bone Jt. Res. 8(3), 107–117 (2019). [DOI: 10.1302/2046-3758.83.BJR-2018-0096.R1]
  17. Muschler, G. F. et al. Spine fusion using cell matrix composites enriched in bone marrow-derived cells. Clin. Orthop. Relat. Res. 407, 102–18 (2003). [DOI: 10.1097/00003086-200302000-00018]
  18. Palta, S., Saroa, R. & Palta, A. Overview of the coagulation system. Indian. J. Anaesth. 58(5), 515–23 (2014). [PMID: 25535411]
  19. Kim, Y. J., Bridwell, K. H., Lenke, L. G., Rhim, S. & Cheh, G. Pseudarthrosis in long adult spinal deformity instrumentation and fusion to the sacrum: prevalence and risk factor analysis of 144 cases. Spine 31(20), 2329–36 (2006). [PMID: 16985461]
  20. Barbanti Bròdano, G. et al. Hydroxyapatite-Based Biomaterials Versus Autologous Bone Graft in Spinal Fusion: An In Vivo Animal Study. Spine 39(11), 661–668 (2014). [DOI: 10.1097/BRS.0000000000000311]
  21. Schroeder, J., Kueper, J., Leon, K. & Liebergall, M. Stem cells for spine surgery. World J. Stem Cell 7(1), 186–94 (2015). [DOI: 10.4252/wjsc.v7.i1.186]
  22. Tural-Kara, T., Özdemir, H., Fitöz, S., Çiftçi, E. & Yalçınkaya, F. Bone marrow aspiration complications: Iliopsoas abscess and sacroiliac osteomyelitis. Turk. J. Pediatr. 58(5), 562–565 (2016). [PMID: 28621103]
  23. Horn, P. et al. Isolation of human mesenchymal stromal cells is more efficient by red blood cell lysis. Cytotherapy 10(7), 676–85 (2008). [PMID: 18985474]
  24. Italiano, J. E. Jr et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 111(3), 1227–33 (2008). [PMID: 17962514]
  25. Schallmoser, K. et al. Human platelet lysate can replace fetal bovine serum for clinical-scale expansion of functional mesenchymal stromal cells. Transfus. 47(8), 1436–46 (2007). [DOI: 10.1111/j.1537-2995.2007.01220.x]
  26. Grafe, I., Alexander, S. & Peterson, J. R. TGF-beta family signaling in mesenchymal differentiation. Cold Spring Harb. Perspect. Biol. 10(5), A022202 (2018). [PMID: 28507020]
  27. Ferrara, N. & Gerber, H. P. The role of vascular endothelial growth factor in angiogenesis. Acta Haematol. 106(4), 148–156 (2001). [PMID: 11815711]
  28. Tsutsumi, A. et al. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem. Biophys. Res. Commun. 288, 413–419 (2001). [PMID: 11606058]
  29. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4), 315–7 (2006). [PMID: 16923606]
  30. Reinisch, A. et al. Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation. Blood 125(2), 249–60 (2015). [PMID: 25406351]
  31. Yoshimura, K. et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J. Cell Physiol. 208(1), 64–76 (2006). [PMID: 16557516]
  32. Ferraro, G. A. et al. Human adipose CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues. J. Cell Biochem. 114(5), 1039–49 (2013). [PMID: 23129214]
  33. Sidney, L. E., Branch, M. J., Dunphy, S. E., Dua, H. S. & Hopkinson, A. Concise review: evidence for CD34 as a common marker for diverse progenitors. Stem Cell 32(6), 1380–9 (2014). [DOI: 10.1002/stem.1661]
  34. Quirici, N. et al. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies. Exp. Hematol. 30(7), 783–91 (2002). [PMID: 12135677]
  35. Kuçi, S. et al. CD271 antigen defines a subset of multipotent stromal cells with immunosuppressive and lymphohematopoietic engraftment-promoting properties. Haematologica 95(4), 651–9 (2010). [PMID: 20179086]
  36. Simmons, P. J. & Torok-Storb, B. CD34 expression by stromal precursors in normal human adult bone marrow. Blood 78(11), 2848–53 (1991). [PMID: 1720038]
  37. Kopher, R. A. et al. Human embryonic stem cell-derived CD34+ cells function as MSC progenitor cells. Bone 47(4), 718–28 (2010). [PMID: 20601304]
  38. Woodfin, A., Voisin, M. B. & Nourshargh, S. PECAM-1: a multi-functional molecule in inflammation and vascular biology. Arterioscler. Thromb. Vasc. Biol. 27(12), 2514–23 (2007). [PMID: 17872453]
  39. Gheisari, Y. & Ahmadbeigi, N. Mesenchymal Stem Cells and Endothelial Cells: A Common Ancestor? Arch. Iran. Med. 19(8), 584–7 (2016). [PMID: 27544368]
  40. De Girolamo, L. et al. Mesenchymal stem/stromal cells: a new “cells as drugs” paradigm. Efficacy and critical aspects in cell therapy. Curr. Pharm. Des. 19(13), 2459–73 (2013). [PMID: 23278600]
  41. Schieker, M. et al. The use of four-colour immunofluorescence techniques to identify mesenchymal stem cells. J. Anat. 204(2), 133–9 (2004). [PMID: 15032920]
  42. Zhu, H. et al. The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cell 24(4), 928–35 (2006). [DOI: 10.1634/stemcells.2005-0186]
  43. Suto, E. G. et al. Prospectively isolated mesenchymal stem/stromal cells are enriched in the CD73+ population and exhibit efficacy after transplantation. Sci. Rep. 7(1), 4838 (2017). [PMID: 28684854]
  44. Rege, T. A. & Hagood, J. S. Thy-1, a versatile modulator of signaling affecting cellular adhesion, proliferation, survival, and cytokine/growth factor responses. Biochim. Biophys. Acta 1763(10), 991–9 (2006). [PMID: 16996153]
  45. Caplan, A. I. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng. 11(7-8), 1198–211 (2005). [PMID: 16144456]
  46. Bielby, R., Jones, E. & McGonagle, D. The role of mesenchymal stem cells in maintenance and repair of bone. Injury 38(Suppl 1), 26–32 (2007). [DOI: 10.1016/j.injury.2007.02.007]
  47. Hanna, H., Mir, L. M. & Andre, F. M. In vitro osteoblastic differentiation of mesenchymal stem cells generates cell layers with distinct properties. Stem Cell Res. Ther. 9(1), 203 (2018). [PMID: 30053888]
  48. Wright, E. M., Snopek, B. & Koopman, P. Seven new members of the Sox gene family expressed during mouse development. Nucleic Acids Res. 21(3), 744 (1993). [PMID: 8441686]
  49. Rux, D. R. & Wellik, D. M. Hox genes in the adult skeleton: Novel functions beyond embryonic development. Dev. Dyn. 246(4), 310–317 (2017). [PMID: 28026082]
  50. Gordon, J. A. et al. Pbx1 represses osteoblastogenesis by blocking Hoxa10-mediated recruitment of chromatin remodeling factors. Mol. Cell. Biol. 30(14), 3531–41 (2010). [PMID: 20439491]
  51. Roson-Burgo, B., Sanchez-Guijo, F., Del Cañizo, C. & De Las Rivas, J. Transcriptomic portrait of human Mesenchymal Stromal/Stem Cells isolated from bone marrow and placenta. BMC Genomics 15, 910 (2014). [PMID: 25326687]
  52. Piek, E. et al. Osteo-transcriptomics of human mesenchymal stem cells: accelerated gene expression and osteoblast differentiation induced by vitamin D reveals c-MYC as an enhancer of BMP2-induced osteogenesis. Bone 46(3), 613–27 (2010). [PMID: 19857615]
  53. Saulnier, N. et al. Gene profiling of bone marrow- and adipose tissue-derived stromal cells: a key role of Kruppel-like factor 4 in cell fate regulation. Cytotherapy 13(3), 329–40 (2011). [PMID: 20849362]
  54. Davidson, A. J. et al. cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes. Nat. 425(6955), 300–6 (2003). [DOI: 10.1038/nature01973]
  55. Livak, K. J. & Schmittgen, T. D. Analysis of relative gen e expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))Method. Methods 25, 402–408 (2001). [DOI: 10.1006/meth.2001.1262]
  56. Mair P., Wilcox R. Robust Statistical Methods Using WRS2 package. Behav Res Methods (2019).
  57. Wilcox, R. R. & Tian, S. T. Measuring effect size: a robust heteroscedastic approach for two or more groups. J. Appl. Stat. 38(7), 1359–1368 (2011). [DOI: 10.1080/02664763.2010.498507]
  58. Wilcox, R. R. Introduction to Robust Estimation and Hypothesis Testing - 4th Edition, Academic Press, Elsevier Inc., Amsterdam, The Netherlands (2017). [DOI: 10.1016/B978-0-12-804733-0.00010-X]

MeSH Term

Adipogenesis
Antigens, Surface
Bone Marrow Cells
Cell Culture Techniques
Cell Lineage
Cell Separation
Chondrogenesis
Female
Humans
Middle Aged
Osteogenesis
Spine
Surgical Wound
Transcriptome
Wound Healing

Chemicals

Antigens, Surface

Word Cloud

Created with Highcharts 10.0.0V-BMAMSCsclottedspinalcellVertebralsitetherapyapproachsurgerystudybiologicalshowedcellularabilitydifferentiatecomparisonbodybonemarrowaspirateeasilyaccessiblesimultaneouslypreparationpediclescrewinsertionproceduresbecomingincreasinglyusedHowevermaindrawbacksuselackstandardizedprocedurestructuraltexturepossibilitydiffusionawayimplantaimevaluatecharacterizecomparecharacteristicswholeconcentrateV-BMAshighestviabilitygrowthfactorsexpressionTGF-βVEGF-AFGF2greatestcolonyformingunitCFUpotencyhomogeneitytowardsosteogenicCOL1AITNFRSF11BBGLAPchondrogenicphenotypeSOX9lowesttowardadipogeniclineageADIPOQcultureconditionsAdditionallyresultsrevealeddifferentlyisolatedexpresseddifferentlevelHOXTALEsignaturesPBX1MEIS3down-regulatedconcentratedonedemonstratedfirsttimesourceinsidebestpropertiesrepresentingalternativeadvancedpatientsundergoingRationaleUseClottedBoneMarrowAidTissueRegenerationFollowingSpinalSurgery

Similar Articles

Cited By