Low mutational load and high mutation rate variation in gut commensal bacteria.

Ricardo S Ramiro, Paulo Durão, Claudia Bank, Isabel Gordo
Author Information
  1. Ricardo S Ramiro: Instituto Gulbenkian de Ciência, Oeiras, Portugal. ORCID
  2. Paulo Durão: Instituto Gulbenkian de Ciência, Oeiras, Portugal. ORCID
  3. Claudia Bank: Instituto Gulbenkian de Ciência, Oeiras, Portugal. ORCID
  4. Isabel Gordo: Instituto Gulbenkian de Ciência, Oeiras, Portugal. ORCID

Abstract

Bacteria generally live in species-rich communities, such as the gut microbiota. Yet little is known about bacterial evolution in natural ecosystems. Here, we followed the long-term evolution of commensal Escherichia coli in the mouse gut. We observe the emergence of mutation rate polymorphism, ranging from wild-type levels to 1,000-fold higher. By combining experiments, whole-genome sequencing, and in silico simulations, we identify the molecular causes and explore the evolutionary conditions allowing these hypermutators to emerge and coexist within the microbiota. The hypermutator phenotype is caused by mutations in DNA polymerase III proofreading and catalytic subunits, which increase mutation rate by approximately 1,000-fold and stabilise hypermutator fitness, respectively. Strong mutation rate variation persists for >1,000 generations, with coexistence between lineages carrying 4 to >600 mutations. The in vivo molecular evolution pattern is consistent with fitness effects of deleterious mutations sd ≤ 10-4/generation, assuming a constant effect or exponentially distributed effects with a constant mean. Such effects are lower than typical in vitro estimates, leading to a low mutational load, an inference that is observed in in vivo and in vitro competitions. Despite large numbers of deleterious mutations, we identify multiple beneficial mutations that do not reach fixation over long periods of time. This indicates that the dynamics of beneficial mutations are not shaped by constant positive Darwinian selection but could be explained by other evolutionary mechanisms that maintain genetic diversity. Thus, microbial evolution in the gut is likely characterised by partial sweeps of beneficial mutations combined with hitchhiking of slightly deleterious mutations, which take a long time to be purged because they impose a low mutational load. The combination of these two processes could allow for the long-term maintenance of intraspecies genetic diversity, including mutation rate polymorphism. These results are consistent with the pattern of genetic polymorphism that is emerging from metagenomics studies of the human gut microbiota, suggesting that we have identified key evolutionary processes shaping the genetic composition of this community.

Associated Data

figshare | 10.6084/m9.figshare.11409528; 10.6084/m9.figshare.10048427

References

  1. Proc Natl Acad Sci U S A. 2019 Sep 3;116(36):17906-17915 [PMID: 31431529]
  2. Genetica. 1992;85(2):173-9 [PMID: 1624139]
  3. FEMS Microbiol Rev. 2012 Nov;36(6):1105-21 [PMID: 22404288]
  4. Antimicrob Agents Chemother. 2000 Jun;44(6):1568-74 [PMID: 10817710]
  5. Trends Microbiol. 1999 Jan;7(1):29-36 [PMID: 10068995]
  6. Nature. 2016 Aug 11;536(7615):165-70 [PMID: 27479321]
  7. Genetics. 1994 Jun;137(2):597-606 [PMID: 8070669]
  8. PLoS Biol. 2015 Jan 20;13(1):e1002050 [PMID: 25602283]
  9. Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):222-7 [PMID: 23248287]
  10. Cell. 2018 Mar 8;172(6):1216-1227 [PMID: 29522743]
  11. Nature. 2017 Nov 23;551(7681):457-463 [PMID: 29088705]
  12. Clin Microbiol Infect. 2016 Jun;22(6):566.e1-7 [PMID: 27021422]
  13. Trends Microbiol. 2010 May;18(5):205-14 [PMID: 20202847]
  14. Proc Biol Sci. 2002 Mar 22;269(1491):591-7 [PMID: 11916475]
  15. Trends Microbiol. 2014 Aug;22(8):438-45 [PMID: 24842194]
  16. Science. 2018 Mar 16;359(6381):1283-1286 [PMID: 29590079]
  17. Appl Environ Microbiol. 2017 Jun 16;83(13): [PMID: 28411228]
  18. Biol Lett. 2013 Feb 23;9(1):20120239 [PMID: 22764110]
  19. PLoS Genet. 2018 Apr 27;14(4):e1007324 [PMID: 29702649]
  20. Science. 1997 Sep 5;277(5331):1453-62 [PMID: 9278503]
  21. Genetics. 2000 Jun;155(2):909-19 [PMID: 10835409]
  22. Infect Immun. 2014 May;82(5):1931-8 [PMID: 24566621]
  23. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1:4554-61 [PMID: 20847294]
  24. EcoSal Plus. 2005 Nov;1(2): [PMID: 26443507]
  25. Nat Rev Microbiol. 2016 Jan;14(1):20-32 [PMID: 26499895]
  26. Genetics. 2000 Mar;154(3):1379-87 [PMID: 10757777]
  27. Evolution. 2004 Jul;58(7):1403-13 [PMID: 15341144]
  28. Mol Syst Biol. 2006;2:2006.0008 [PMID: 16738554]
  29. PLoS Genet. 2014 Mar 06;10(3):e1004182 [PMID: 24603313]
  30. Cell Rep. 2015 Mar 24;10(11):1861-71 [PMID: 25801025]
  31. Nat Rev Genet. 2013 Dec;14(12):827-39 [PMID: 24166031]
  32. Bioinformatics. 2009 Jun 15;25(12):1564-5 [PMID: 19369502]
  33. Science. 2016 Sep 9;353(6304):1147-51 [PMID: 27609891]
  34. Genetics. 1999 Jun;152(2):485-93 [PMID: 10353893]
  35. PLoS One. 2013 Sep 12;8(9):e72963 [PMID: 24069167]
  36. Evolution. 1990 Nov;44(7):1725-1737 [PMID: 28567811]
  37. Bioinformatics. 2019 Feb 1;35(3):526-528 [PMID: 30016406]
  38. Annu Rev Microbiol. 2013;67:65-81 [PMID: 23701194]
  39. J Biol. 2003;2(2):14 [PMID: 12775217]
  40. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  41. Science. 2007 Aug 10;317(5839):813-5 [PMID: 17690297]
  42. Nat Commun. 2015 Nov 30;6:8945 [PMID: 26615893]
  43. Nat Ecol Evol. 2018 Jan;2(1):57-64 [PMID: 29203921]
  44. Cell Host Microbe. 2019 May 8;25(5):656-667.e8 [PMID: 31028005]
  45. Microbiology. 2015 May;161(Pt 5):1113-1123 [PMID: 25701731]
  46. Nature. 2012 May 09;486(7402):222-7 [PMID: 22699611]
  47. Nature. 2014 Jan 23;505(7484):559-63 [PMID: 24336217]
  48. Mol Ecol. 2017 Apr;26(7):1802-1817 [PMID: 27661780]
  49. Genetics. 1974 Oct;78(2):737-56 [PMID: 4448362]
  50. Biol Lett. 2011 Jun 23;7(3):422-4 [PMID: 21227974]
  51. Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2774-83 [PMID: 22991466]
  52. Mol Biol Evol. 2017 Nov 1;34(11):2879-2892 [PMID: 28961745]
  53. Cell. 2014 Oct 23;159(3):514-29 [PMID: 25417104]
  54. mBio. 2019 Jul 2;10(4): [PMID: 31266871]
  55. Genetics. 2002 Nov;162(3):1055-62 [PMID: 12454055]
  56. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):2856-61 [PMID: 8610131]
  57. J Bacteriol. 1994 Oct;176(20):6214-20 [PMID: 7928991]
  58. PLoS Biol. 2017 Jun 8;15(6):e2001477 [PMID: 28594817]
  59. Curr Opin Microbiol. 2017 Aug;38:114-121 [PMID: 28591676]
  60. PLoS Biol. 2019 Jan 23;17(1):e3000102 [PMID: 30673701]
  61. J Bacteriol. 1992 Mar;174(6):1974-82 [PMID: 1548237]
  62. Microb Cell Fact. 2004 Jun 16;3(1):8 [PMID: 15200682]
  63. J Biol Chem. 1993 Jun 5;268(16):11785-91 [PMID: 8505306]
  64. Nature. 2018 May;557(7706):503-509 [PMID: 29769716]
  65. Biol Lett. 2008 Feb 23;4(1):57-9 [PMID: 18029298]
  66. Nature. 1997 Jun 12;387(6634):700-2 [PMID: 9192893]
  67. Science. 2001 Mar 30;291(5513):2606-8 [PMID: 11283373]
  68. J Theor Biol. 2006 Mar 21;239(2):226-35 [PMID: 16239014]
  69. Mol Biol Evol. 2018 Dec 1;35(12):3041-3043 [PMID: 30351396]
  70. Science. 2013 Feb 8;339(6120):708-11 [PMID: 23393266]
  71. J Biol Chem. 2002 Nov 8;277(45):42523-9 [PMID: 12147680]
  72. Clin Diagn Lab Immunol. 1999 May;6(3):434-6 [PMID: 10225851]
  73. Virology. 1955 Jul;1(2):190-206 [PMID: 13267987]
  74. Mutat Res. 1964 May;106:2-9 [PMID: 14195748]
  75. G3 (Bethesda). 2013 Mar;3(3):399-407 [PMID: 23450823]
  76. Science. 1996 Nov 15;274(5290):1208-11 [PMID: 8895473]
  77. Infect Immun. 2009 Jul;77(7):2876-86 [PMID: 19364832]
  78. Nature. 1997 Jun 12;387(6634):703-5 [PMID: 9192894]
  79. Cell Host Microbe. 2019 Feb 13;25(2):301-312.e5 [PMID: 30683582]
  80. Evolution. 1983 Jan;37(1):125-134 [PMID: 28568016]
  81. Nat Rev Microbiol. 2010 Mar;8(3):207-17 [PMID: 20157339]
  82. G3 (Bethesda). 2012 Apr;2(4):483-5 [PMID: 22540039]
  83. Annu Rev Genet. 2005;39:197-218 [PMID: 16285858]
  84. Genetics. 2006 Feb;172(2):1079-92 [PMID: 16299397]
  85. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  86. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2189-92 [PMID: 6340117]
  87. mBio. 2018 Aug 21;9(4): [PMID: 30131359]
  88. PLoS Genet. 2014 Jan;10(1):e1004056 [PMID: 24391520]
  89. Genetics. 1994 Aug;137(4):1139-46 [PMID: 7982567]
  90. PLoS Genet. 2011 Jun;7(6):e1002107 [PMID: 21698140]
  91. Philos Trans R Soc Lond B Biol Sci. 2010 Apr 27;365(1544):1177-86 [PMID: 20308092]
  92. J Bacteriol. 2004 May;186(9):2774-80 [PMID: 15090519]
  93. Science. 2012 Dec 7;338(6112):1344-8 [PMID: 23224554]
  94. Science. 2000 May 19;288(5469):1251-4 [PMID: 10818002]
  95. Nature. 1996 Jun 20;381(6584):694-6 [PMID: 8649513]
  96. Sci Transl Med. 2016 Jun 15;8(343):343ra81 [PMID: 27306663]
  97. Genome Res. 2017 Apr;27(4):626-638 [PMID: 28167665]
  98. J Comput Biol. 2002;9(5):687-705 [PMID: 12487758]
  99. Mol Microbiol. 2005 Jul;57(1):1-8 [PMID: 15948944]
  100. Nucleic Acids Res. 2017 Jan 4;45(D1):D543-D550 [PMID: 27899573]
  101. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7160-4 [PMID: 1831267]
  102. Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17878-83 [PMID: 19001264]
  103. Curr Protoc Mol Biol. 2001 Nov;Chapter 2:Unit 2.4 [PMID: 18265184]
  104. PLoS Genet. 2016 Nov 3;12(11):e1006420 [PMID: 27812114]
  105. Infect Immun. 1999 Feb;67(2):546-53 [PMID: 9916057]
  106. Infect Immun. 2012 May;80(5):1716-27 [PMID: 22392928]
  107. Nat Rev Genet. 2007 Aug;8(8):610-8 [PMID: 17637733]
  108. Proc Natl Acad Sci U S A. 2016 Mar 1;113(9):2502-7 [PMID: 26884157]
  109. Arch Microbiol. 1978 Aug 1;118(2):199-206 [PMID: 211976]
  110. Nat Struct Mol Biol. 2017 Feb;24(2):140-143 [PMID: 28067916]
  111. Gene. 1996 Nov 28;181(1-2):103-8 [PMID: 8973315]
  112. J Biol Chem. 1985 Oct 25;260(24):12982-6 [PMID: 2932432]
  113. Methods. 2000 Jan;20(1):4-17 [PMID: 10610800]
  114. J Antibiot (Tokyo). 2014 Sep;67(9):625-30 [PMID: 25118103]
  115. Elife. 2017 May 02;6: [PMID: 28460660]
  116. Genetics. 2014 Jul;197(3):981-90 [PMID: 24814466]
  117. Environ Microbiol Rep. 2015 Aug;7(4):642-8 [PMID: 26034010]
  118. Nat Rev Genet. 2016 Oct 14;17(11):704-714 [PMID: 27739533]
  119. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  120. Nat Genet. 2019 Feb;51(2):202-206 [PMID: 30643254]
  121. Mutat Res. 2017 Aug;800-802:37-45 [PMID: 28646746]
  122. Nucleic Acids Res. 2016 Jan 4;44(D1):D286-93 [PMID: 26582926]
  123. Science. 1997 Sep 19;277(5333):1833-4 [PMID: 9324769]
  124. Methods Mol Biol. 2014;1151:165-88 [PMID: 24838886]
  125. Nature. 2017 Aug 2;548(7665):43-51 [PMID: 28770836]

MeSH Term

Adaptation, Physiological
Animals
Anti-Bacterial Agents
DNA Polymerase III
Escherichia coli
Escherichia coli Proteins
Gastrointestinal Microbiome
Male
Mice, Inbred C57BL
Microorganisms, Genetically-Modified
Mutation Rate
Selection, Genetic

Chemicals

Anti-Bacterial Agents
Escherichia coli Proteins
DNA polymerase III, alpha subunit
DNA Polymerase III
dnaQ protein, E coli

Word Cloud

Created with Highcharts 10.0.0mutationsgutmutationrateevolutiongeneticmicrobiotapolymorphismevolutionaryeffectsdeleteriousconstantmutationalloadbeneficiallong-termcommensal1000-foldidentifymolecularhypermutatorfitnessvariationvivopatternconsistentvitrolowlongtimediversityprocessesBacteriagenerallylivespecies-richcommunitiesYetlittleknownbacterialnaturalecosystemsfollowedEscherichiacolimouseobserveemergencerangingwild-typelevelshighercombiningexperimentswhole-genomesequencingsilicosimulationscausesexploreconditionsallowinghypermutatorsemergecoexistwithinphenotypecausedDNApolymeraseIIIproofreadingcatalyticsubunitsincreaseapproximatelystabiliserespectivelyStrongpersists>1000generationscoexistencelineagescarrying4>600sd10-4/generationassumingeffectexponentiallydistributedmeanlowertypicalestimatesleadinginferenceobservedcompetitionsDespitelargenumbersmultiplereachfixationperiodsindicatesdynamicsshapedpositiveDarwinianselectionexplainedmechanismsmaintainThusmicrobiallikelycharacterisedpartialsweepscombinedhitchhikingslightlytakepurgedimposecombinationtwoallowmaintenanceintraspeciesincludingresultsemergingmetagenomicsstudieshumansuggestingidentifiedkeyshapingcompositioncommunityLowhighbacteria

Similar Articles

Cited By