Spatiotemporal Imputation of MAIAC AOD Using Deep Learning with Downscaling.

Lianfa Li, Meredith Franklin, Mariam Girguis, Frederick Lurmann, Jun Wu, Nathan Pavlovic, Carrie Breton, Frank Gilliland, Rima Habre
Author Information
  1. Lianfa Li: Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
  2. Meredith Franklin: Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
  3. Mariam Girguis: Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
  4. Frederick Lurmann: Sonoma Technology, Inc., Petaluma, CA, USA.
  5. Jun Wu: Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA, USA.
  6. Nathan Pavlovic: Sonoma Technology, Inc., Petaluma, CA, USA.
  7. Carrie Breton: Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
  8. Frank Gilliland: Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.
  9. Rima Habre: Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA.

Abstract

Aerosols have adverse health effects and play a significant role in the climate as well. The Multiangle Implementation of Atmospheric Correction (MAIAC) provides Aerosol Optical Depth (AOD) at high temporal (daily) and spatial (1 km) resolution, making it particularly useful to infer and characterize spatiotemporal variability of aerosols at a fine spatial scale for exposure assessment and health studies. However, clouds and conditions of high surface reflectance result in a significant proportion of missing MAIAC AOD. To fill these gaps, we present an imputation approach using deep learning with downscaling. Using a baseline autoencoder, we leverage residual connections in deep neural networks to boost learning and parameter sharing to reduce overfitting, and conduct bagging to reduce error variance in the imputations. Downscaled through a similar auto-encoder based deep residual network, Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) GMI Replay Simulation (M2GMI) data were introduced to the network as an important gap-filling feature that varies in space to be used for missingness imputations. Imputing weekly MAIAC AOD from 2000 to 2016 over California, a state with considerable geographic heterogeneity, our full (non-full) residual network achieved mean R = 0.94 (0.86) [RMSE = 0.007 (0.01)] in an independent test, showing considerably better performance than a regular neural network or non-linear generalized additive model (mean R = 0.78-0.81; mean RMSE = 0.013-0.015). The adjusted imputed as well as combined imputed and observed MAIAC AOD showed strong correlation with Aerosol Robotic Network (AERONET) AOD (R = 0.83; R = 0.69, RMSE = 0.04). Our results show that we can generate reliable imputations of missing AOD through a deep learning approach, having important downstream air quality modeling applications.

Keywords

References

  1. J Clim. 2017 Sep;30(17):6823-6850 [PMID: 29576684]
  2. Environ Sci Technol. 2016 May 3;50(9):4712-21 [PMID: 27023334]
  3. Environ Sci Technol. 2015 Oct 20;49(20):12280-8 [PMID: 26310776]
  4. IEEE Trans Neural Netw Learn Syst. 2021 Sep;32(9):4217-4230 [PMID: 32881694]
  5. Atmos Environ (1994). 2015 Dec;122:409-416 [PMID: 28966551]
  6. Environ Health Perspect. 2009 Jun;117(6):904-9 [PMID: 19590681]
  7. J Geophys Res Atmos. 2017 Mar 16;122(5):3005-3022 [PMID: 29796366]
  8. IEEE Trans Pattern Anal Mach Intell. 2016 May;38(5):918-30 [PMID: 27046839]
  9. Environ Sci Technol. 2017 Jun 20;51(12):6936-6944 [PMID: 28534414]
  10. Neural Comput. 2003 Mar;15(3):621-38 [PMID: 12620160]
  11. Environ Sci Technol. 2016 May 3;50(9):4752-9 [PMID: 27043852]
  12. J Air Waste Manag Assoc. 2013 Sep;63(9):1083-90 [PMID: 24151683]
  13. Environ Sci Technol. 2015 Jul 21;49(14):8576-84 [PMID: 26061488]
  14. Environ Sci Technol. 2016 Jan 5;50(1):79-88 [PMID: 26595236]
  15. Nature. 2002 Sep 12;419(6903):215-23 [PMID: 12226676]
  16. Int J Environ Health Res. 2016 Oct-Dec;26(5-6):572-7 [PMID: 27666297]
  17. Environ Sci Technol. 2012 Nov 6;46(21):11913-21 [PMID: 23013112]
  18. Math Geosci. 2010 Jul 1;42(5):535-554 [PMID: 21132098]

Grants

  1. P30 ES007048/NIEHS NIH HHS
  2. UG3 OD023287/NIH HHS
  3. UH3 OD023287/NIH HHS

Word Cloud

Created with Highcharts 10.0.00AOD=MAIACdeeplearningnetworkRresidualimputationsmeanhealthsignificantwellAerosolhighspatialmissingimputationapproachdownscalingUsingneuralreduceMERRA-2GMIReplaySimulationimportantmissingnessRMSEimputedairqualityAerosolsadverseeffectsplayroleclimateMultiangleImplementationAtmosphericCorrectionprovidesOpticalDepthtemporaldaily1kmresolutionmakingparticularlyusefulinfercharacterizespatiotemporalvariabilityaerosolsfinescaleexposureassessmentstudiesHowevercloudsconditionssurfacereflectanceresultproportionfillgapspresentusingbaselineautoencoderleverageconnectionsnetworksboostparametersharingoverfittingconductbaggingerrorvarianceDownscaledsimilarauto-encoderbasedModern-EraRetrospectiveanalysisResearchApplicationsVersion2M2GMIdataintroducedgap-fillingfeaturevariesspaceusedImputingweekly20002016Californiastateconsiderablegeographicheterogeneityfullnon-fullachieved9486[RMSE00701]independenttestshowingconsiderablybetterperformanceregularnon-lineargeneralizedadditivemodel78-081013-0015adjustedcombinedobservedshowedstrongcorrelationRoboticNetworkAERONET836904resultsshowcangeneratereliabledownstreammodelingapplicationsSpatiotemporalImputationDeepLearningDownscalingaerosolopticaldepth

Similar Articles

Cited By