Sensitivity, uncertainty and identifiability analyses to define a dengue transmission model with real data of an endemic municipality of Colombia.

Diana Paola Lizarralde-Bejarano, Daniel Rojas-Díaz, Sair Arboleda-Sánchez, María Eugenia Puerta-Yepes
Author Information
  1. Diana Paola Lizarralde-Bejarano: Departamento de Ciencias Matemáticas, Universidad EAFIT, Medellín, Antioquia, Colombia. ORCID
  2. Daniel Rojas-Díaz: Departamento de Ciencias Biológicas, Universidad EAFIT, Medellín, Antioquia, Colombia. ORCID
  3. Sair Arboleda-Sánchez: Grupo de Biología y Control de Enfermedades Infecciosas-BCEI, Universidad de Antioquia, Medellín, Antioquia, Colombia.
  4. María Eugenia Puerta-Yepes: Departamento de Ciencias Matemáticas, Universidad EAFIT, Medellín, Antioquia, Colombia.

Abstract

Dengue disease is a major problem for public health surveillance entities in tropical and subtropical regions having a significant impact not only epidemiological but social and economical. There are many factors involved in the dengue transmission process. We can evaluate the importance of these factors through the formulation of mathematical models. However, the majority of the models presented in the literature tend to be overparameterized, with considerable uncertainty levels and excessively complex formulations. We aim to evaluate the structure, complexity, trustworthiness, and suitability of three models, for the transmission of dengue disease, through different strategies. To achieve this goal, we perform structural and practical identifiability, sensitivity and uncertainty analyses to these models. The results showed that the simplest model was the most appropriate and reliable when the only available information to fit them is the cumulative number of reported dengue cases in an endemic municipality of Colombia.

References

  1. Arch Virol. 2019 Jan;164(1):149-158 [PMID: 30298277]
  2. PLoS Comput Biol. 2016 Oct 28;12(10):e1005153 [PMID: 27792726]
  3. Int J Environ Res Public Health. 2016 Jul 21;13(5): [PMID: 27455289]
  4. Risk Anal. 2018 Dec;38(12):2703-2721 [PMID: 29975984]
  5. PLoS One. 2016 Sep 08;11(9):e0162406 [PMID: 27607239]
  6. Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18507-12 [PMID: 25512544]
  7. J Math Biol. 2003 Jan;46(1):31-47 [PMID: 12525934]
  8. Bull Math Biol. 2018 Aug;80(8):2209-2241 [PMID: 29948883]
  9. Vaccine. 2017 Dec 15;35(50):6957-6966 [PMID: 29110932]
  10. PLoS One. 2014 Oct 28;9(10):e110261 [PMID: 25350289]
  11. Acta Biotheor. 2002;50(3):189-204 [PMID: 12211331]
  12. Math Biosci. 2018 May;299:1-18 [PMID: 29477671]
  13. J Math Biol. 1990;28(4):365-82 [PMID: 2117040]
  14. PLoS One. 2011;6(11):e27755 [PMID: 22132135]
  15. Comput Methods Programs Biomed. 2007 Oct;88(1):52-61 [PMID: 17707944]
  16. J R Soc Interface. 2010 Jun 6;7(47):873-85 [PMID: 19892718]
  17. Vaccine. 2011 Aug 11;29(35):5860-8 [PMID: 21699949]
  18. Epidemiol Infect. 2009 Aug;137(8):1188-202 [PMID: 19192322]
  19. Bioinformatics. 2009 Aug 1;25(15):1923-9 [PMID: 19505944]
  20. SIAM Rev Soc Ind Appl Math. 2011 Jan 1;53(1):3-39 [PMID: 21785515]
  21. J Math Biol. 1999 Mar;38(3):220-40 [PMID: 10220925]
  22. Math Biosci. 1998 Jun 15;150(2):131-51 [PMID: 9656647]
  23. Philos Trans A Math Phys Eng Sci. 2010 Dec 28;368(1933):5679-93 [PMID: 21078642]
  24. BMC Syst Biol. 2017 May 5;11(1):54 [PMID: 28476119]
  25. J Infect Public Health. 2018 Jul - Aug;11(4):558-565 [PMID: 29292044]
  26. J R Soc Interface. 2013 Feb 13;10(81):20120921 [PMID: 23407571]
  27. PLoS One. 2012;7(11):e49085 [PMID: 23139836]
  28. Bull Math Biol. 2016 Sep;78(9):1796-1827 [PMID: 27651156]
  29. Bioinformatics. 2011 Sep 15;27(18):2610-1 [PMID: 21784792]
  30. Sci Rep. 2017 Aug 10;7(1):7721 [PMID: 28798323]

MeSH Term

Aedes
Animals
Basic Reproduction Number
Colombia
Computer Simulation
Dengue
Endemic Diseases
Epidemiologic Factors
Humans
Mathematical Concepts
Models, Biological
Mosquito Vectors
Population Dynamics
Public Health Surveillance
Uncertainty

Word Cloud

Created with Highcharts 10.0.0denguemodelstransmissionuncertaintydiseasefactorsevaluateidentifiabilityanalysesmodelendemicmunicipalityColombiaDenguemajorproblempublichealthsurveillanceentitiestropicalsubtropicalregionssignificantimpactepidemiologicalsocialeconomicalmanyinvolvedprocesscanimportanceformulationmathematicalHowevermajoritypresentedliteraturetendoverparameterizedconsiderablelevelsexcessivelycomplexformulationsaimstructurecomplexitytrustworthinesssuitabilitythreedifferentstrategiesachievegoalperformstructuralpracticalsensitivityresultsshowedsimplestappropriatereliableavailableinformationfitcumulativenumberreportedcasesSensitivitydefinerealdata

Similar Articles

Cited By (4)