Podosome formation promotes plasma membrane invagination and integrin-β3 endocytosis on a viscous RGD-membrane.

Fakun Cao, Yuhuan Zhou, Xiaoting Liu, Cheng-Han Yu
Author Information
  1. Fakun Cao: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China. ORCID
  2. Yuhuan Zhou: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
  3. Xiaoting Liu: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China.
  4. Cheng-Han Yu: School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China. chyu1@hku.hk. ORCID

Abstract

Integrin receptors orchestrate cell adhesion and cytoskeletal reorganization. The endocytic mechanism of integrin-β3 receptor at the podosome remains unclear. Using viscous RGD-membrane as the model system, here we show that the formation of podosome-like adhesion promotes Dab2/clathrin-mediated endocytosis of integrin-β3. Integrin-β3 and RGD ligand are endocytosed from the podosome and sorted into the endosomal compartment. Inhibitions of podosome formation and knockdowns of Dab2 and clathrin reduce RGD endocytosis. F-actin assembly at the podosome core exhibits protrusive contact towards the substrate and results in plasma membrane invaginations at the podosome ring. BIN1 specifically associates with the region of invaginated membrane and recruits DNM2. During the podosome formation, BIN1 and DNM2 synchronously enrich at the podosome ring and trigger clathrin dissociation and RGD endocytosis. Knockdowns of BIN1 and DNM2 suppress RGD endocytosis. Thus, plasma membrane invagination caused by F-actin polymerization promotes BIN1-dependent DNM2 recruitment and facilitate integrin-β3 endocytosis at the podosome.

References

  1. Wehrle-Haller, B. Assembly and disassembly of cell matrix adhesions. Curr. Opin. Cell Biol. 24, 569–581 (2012). [PMID: 22819514]
  2. Winograd-Katz, S. E., Fassler, R., Geiger, B. & Legate, K. R. The integrin adhesome: from genes and proteins to human disease. Nat. Rev. Mol. Cell Biol. 15, 273–288 (2014). [PMID: 24651544]
  3. Calderwood, D. A., Campbell, I. D. & Critchley, D. R. Talins and kindlins: partners in integrin-mediated adhesion. Nat. Rev. Mol. Cell Biol. 14, 503–517 (2013). [PMID: 23860236]
  4. Albiges-Rizo, C., Destaing, O., Fourcade, B., Planus, E. & Block, M. R. Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J. Cell Sci. 122, 3037–3049 (2009). [PMID: 19692590]
  5. Murphy, D. A. & Courtneidge, S. A. The ‘ins’ and ‘outs’ of podosomes and invadopodia: characteristics, formation and function. Nat. Rev. Mol. Cell Biol. 12, 413–426 (2011). [PMID: 21697900]
  6. Yu, C. H. et al. Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep. 5, 1456–1468 (2013). [PMID: 24290759]
  7. Linder, S. The matrix corroded: podosomes and invadopodia in extracellular matrix degradation. Trends Cell Biol. 17, 107–117 (2007). [PMID: 17275303]
  8. Veillat, V. et al. Podosomes: multipurpose organelles? Int. J. Biochem. Cell Biol. 65, 52–60 (2015). [PMID: 26028292]
  9. Oikawa, T., Itoh, T. & Takenawa, T. Sequential signals toward podosome formation in NIH-src cells. J. Cell Biol. 182, 157–169 (2008). [PMID: 18606851]
  10. Linder, S. & Wiesner, C. Feel the force: podosomes in mechanosensing. Exp. Cell Res. 343, 67–72 (2016). [PMID: 26658516]
  11. Labernadie, A. et al. Protrusion force microscopy reveals oscillatory force generation and mechanosensing activity of human macrophage podosomes. Nat. Commun. 5, 5343 (2014). [PMID: 25385672]
  12. Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9–22 (2010). [PMID: 20029421]
  13. De Franceschi, N., Hamidi, H., Alanko, J., Sahgal, P. & Ivaska, J. Integrin traffic—the update. J. Cell Sci. 128, 839–852 (2015). [PMID: 25663697]
  14. Doherty, G. J. & McMahon, H. T. Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2009). [PMID: 19317650]
  15. Paul, N. R., Jacquemet, G. & Caswell, P. T. Endocytic trafficking of integrins in cell migration. Curr. Biol. 25, R1092–1105 (2015). [PMID: 26583903]
  16. Calderwood, D. A. et al. Integrin beta cytoplasmic domain interactions with phosphotyrosine-binding domains: a structural prototype for diversity in integrin signaling. Proc. Natl Acad. Sci. USA 100, 2272–2277 (2003). [PMID: 12606711]
  17. Ezratty, E. J., Bertaux, C., Marcantonio, E. E. & Gundersen, G. G. Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J. Cell Biol. 187, 733–747 (2009). [PMID: 19951918]
  18. Mim, C. & Unger, V. M. Membrane curvature and its generation by BAR proteins. Trends Biochem. Sci. 37, 526–533 (2012). [PMID: 23058040]
  19. Almeida-Souza, L. et al. A flat BAR protein promotes actin polymerization at the base of clathrin-coated pits. Cell 174, 325–337 e314 (2018). [PMID: 29887380]
  20. Ferguson, S. M. & De Camilli, P. Dynamin, a membrane-remodelling GTPase. Nat. Rev. Mol. Cell Biol. 13, 75–88 (2012). [PMID: 22233676]
  21. Ruoslahti, E. Fibronectin and its receptors. Annu. Rev. Biochem. 57, 375–413 (1988). [PMID: 2972252]
  22. Yu, C. H., Law, J. B., Suryana, M., Low, H. Y. & Sheetz, M. P. Early integrin binding to Arg-Gly-Asp peptide activates actin polymerization and contractile movement that stimulates outward translocation. Proc. Natl Acad. Sci. USA 108, 20585–20590 (2011). [PMID: 22139375]
  23. Yu, C. H. et al. Integrin-beta3 clusters recruit clathrin-mediated endocytic machinery in the absence of traction force. Nat. Commun. 6, 8672 (2015). [PMID: 26507506]
  24. Chen, Z. et al. Spatially modulated ephrinA1:EphA2 signaling increases local contractility and global focal adhesion dynamics to promote cell motility. Proc. Natl Acad. Sci. USA 115, E5696–E5705 (2018). [PMID: 29866846]
  25. Rafiq, N. B. et al. Podosome assembly is controlled by the GTPase ARF1 and its nucleotide exchange factor ARNO. J. Cell Biol. 216, 181–197 (2017). [PMID: 28007915]
  26. Linder, S., Hufner, K., Wintergerst, U. & Aepfelbacher, M. Microtubule-dependent formation of podosomal adhesion structures in primary human macrophages. J. Cell Sci. 113, 4165–4176 (2000). [PMID: 11069762]
  27. Grabs, D. et al. The SH3 domain of amphiphysin binds the proline-rich domain of dynamin at a single site that defines a new SH3 binding consensus sequence. J. Biol. Chem. 272, 13419–13425 (1997). [PMID: 9148966]
  28. Peter, B. J. et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495–499 (2004). [DOI: 10.1126/science.1092586]
  29. Itoh, T. & De Camilli, P. BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim. Biophys. Acta 1761, 897–912 (2006). [PMID: 16938488]
  30. Hartig, S. M. et al. The F-BAR protein CIP4 promotes GLUT4 endocytosis through bidirectional interactions with N-WASp and Dynamin-2. J. Cell Sci. 122, 2283–2291 (2009). [PMID: 19509061]
  31. Daumke, O., Roux, A. & Haucke, V. BAR domain scaffolds in dynamin-mediated membrane fission. Cell 156, 882–892 (2014). [PMID: 24581490]
  32. McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011). [PMID: 21779028]
  33. Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018). [PMID: 29410531]
  34. Legate, K. R., Wickstrom, S. A. & Fassler, R. Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev. 23, 397–418 (2009). [PMID: 19240129]
  35. Hamidi, H. & Ivaska, J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 18, 533–548 (2018). [PMID: 30002479]
  36. Castro-Castro, A. et al. Cellular and molecular mechanisms of MT1-MMP-dependent cancer cell invasion. Annu. Rev. Cell Dev. Biol. 32, 555–576 (2016). [PMID: 27501444]
  37. Sawai, H. et al. Activation of focal adhesion kinase enhances the adhesion and invasion of pancreatic cancer cells via extracellular signal-regulated kinase-1/2 signaling pathway activation. Mol. Cancer 4, 37 (2005). [PMID: 16209712]
  38. Mitra, S. K. & Schlaepfer, D. D. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 18, 516–523 (2006). [PMID: 16919435]
  39. Su, J., Muranjan, M. & Sap, J. Receptor protein tyrosine phosphatase alpha activates Src-family kinases and controls integrin-mediated responses in fibroblasts. Curr. Biol. 9, 505–511 (1999). [PMID: 10339427]
  40. Ballestrem, C., Hinz, B., Imhof, B. A. & Wehrle-Haller, B. Marching at the front and dragging behind: differential alphaVbeta3-integrin turnover regulates focal adhesion behavior. J. Cell Biol. 155, 1319–1332 (2001). [PMID: 11756480]
  41. Mettlen, M., Loerke, D., Yarar, D., Danuser, G. & Schmid, S. L. Cargo- and adaptor-specific mechanisms regulate clathrin-mediated endocytosis. J. Cell Biol. 188, 919–933 (2010). [PMID: 20231386]

MeSH Term

Actins
Adaptor Proteins, Signal Transducing
Adaptor Proteins, Vesicular Transport
Animals
Cell Adhesion
Cell Membrane
Cells, Cultured
Clathrin
Dynamin II
Endocytosis
Fibroblasts
Gene Knockdown Techniques
Humans
Integrin beta3
Ligands
Membranes, Artificial
Mice
Nerve Tissue Proteins
Oligopeptides
Podosomes
Polymerization
Rats
Transfection
Tumor Suppressor Proteins

Chemicals

Actins
Adaptor Proteins, Signal Transducing
Adaptor Proteins, Vesicular Transport
Bin1 protein, rat
Clathrin
Dab2 protein, rat
Integrin beta3
Ligands
Membranes, Artificial
Nerve Tissue Proteins
Oligopeptides
Tumor Suppressor Proteins
arginyl-glycyl-aspartic acid
Dynamin II

Word Cloud

Created with Highcharts 10.0.0podosomeendocytosisintegrin-β3formationRGDmembraneDNM2promotesplasmaBIN1adhesionviscousRGD-membraneclathrinF-actinringinvaginationIntegrinreceptorsorchestratecellcytoskeletalreorganizationendocyticmechanismreceptorremainsunclearUsingmodelsystemshowpodosome-likeDab2/clathrin-mediatedIntegrin-β3ligandendocytosedsortedendosomalcompartmentInhibitionsknockdownsDab2reduceassemblycoreexhibitsprotrusivecontacttowardssubstrateresultsinvaginationsspecificallyassociatesregioninvaginatedrecruitssynchronouslyenrichtriggerdissociationKnockdownssuppressThuscausedpolymerizationBIN1-dependentrecruitmentfacilitatePodosome

Similar Articles

Cited By