Genome Dashboards: Framework and Examples.

Zilong Li, Ran Sun, Thomas C Bishop
Author Information
  1. Zilong Li: Chemistry and Physics, Louisiana Tech University, Ruston, Louisiana.
  2. Ran Sun: Chemistry and Physics, Louisiana Tech University, Ruston, Louisiana.
  3. Thomas C Bishop: Chemistry and Physics, Louisiana Tech University, Ruston, Louisiana. Electronic address: bishop@latech.edu.

Abstract

Genomics is a sequence-based informatics science and a three-dimensional-structure-based material science. However, in practice, most genomics researchers utilize sequence-based informatics approaches or three-dimensional-structure-based material science techniques, not both. This division is, at least in part, the result of historical developments rather than a fundamental necessity. The underlying computational tools, experimental techniques, and theoretical models were developed independently. The primary result presented here is a framework for the unification of informatics- and physics-based data associated with DNA, nucleosomes, and chromatin. The framework is based on the mathematical representation of geometrically exact rods and the generalization of DNA basepair step parameters. Data unification enables researchers to integrate computational, experimental, and theoretical approaches for the study of chromatin biology. The framework can be implemented using model-view-controller design principles, existing genome browsers, and existing molecular visualization tools. We developed a minimal, web-based genome dashboard, G-Dash-min, and applied it to two simple examples to demonstrate the usefulness of data unification and proof of concept. Genome dashboards developed using the framework and design principles presented here are extensible and customizable and are therefore more broadly applicable than the examples presented. We expect a number of purpose-specific genome dashboards to emerge as a novel means of investigating structure-function relationships for genomes that range from basepairs to entire chromosomes and for generating, validating, and testing mechanistic hypotheses.

References

  1. Curr Opin Struct Biol. 2011 Feb;21(1):128-36 [PMID: 21176878]
  2. Nucleic Acids Res. 2014 Nov 10;42(20):e153 [PMID: 25228467]
  3. J Mol Biol. 2001 Oct 12;313(1):229-37 [PMID: 11601858]
  4. Methods. 2012 Nov;58(3):268-76 [PMID: 22652625]
  5. J Chem Phys. 2013 Feb 7;138(5):055102 [PMID: 23406150]
  6. Nature. 2015 Oct 1;526(7571):68-74 [PMID: 26432245]
  7. J Mol Biol. 1989 Feb 20;205(4):787-91 [PMID: 2926825]
  8. Curr Opin Genet Dev. 2017 Oct;46:186-193 [PMID: 28843811]
  9. Cell. 1993 Nov 5;75(3):567-78 [PMID: 8221895]
  10. Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):4955-4962 [PMID: 30718394]
  11. Methods. 2017 Jul 1;123:56-65 [PMID: 28435001]
  12. Nature. 2017 Sep 13;549(7671):219-226 [PMID: 28905911]
  13. Mol Ecol Resour. 2019 Sep;19(5):1366-1373 [PMID: 31177626]
  14. Nucleic Acids Res. 2015 Jul 1;43(W1):W576-9 [PMID: 25925569]
  15. Biophys J. 2001 Apr;80(4):1940-56 [PMID: 11259307]
  16. Biophys J. 1997 May;72(5):2056-67 [PMID: 9129808]
  17. J Mol Graph. 1996 Feb;14(1):33-8, 27-8 [PMID: 8744570]
  18. Genes (Basel). 2019 Feb 28;10(3): [PMID: 30823486]
  19. Nucleic Acids Res. 2010 Jan;38(1):299-313 [PMID: 19850719]
  20. Nucleic Acids Res. 2003 Sep 1;31(17):5108-21 [PMID: 12930962]
  21. Wiley Interdiscip Rev Comput Mol Sci. 2020 Mar-Apr;10(2): [PMID: 34046090]
  22. Nat Methods. 2016 Dec;13(12):1009-1011 [PMID: 27723753]
  23. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61 [PMID: 21638687]
  24. Trends Biochem Sci. 2011 Jan;36(1):1-6 [PMID: 20926298]
  25. J Chem Inf Model. 2019 Oct 28;59(10):4289-4299 [PMID: 31490686]
  26. Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9021-5 [PMID: 8415647]
  27. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W254-61 [PMID: 20542915]
  28. J Biol Chem. 2012 Feb 17;287(8):5183-91 [PMID: 22157002]
  29. J Mol Biol. 1995 Sep 1;251(5):648-64 [PMID: 7666417]
  30. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 1):051907 [PMID: 23214814]
  31. Nucleic Acids Res. 2009 Sep;37(17):5917-29 [PMID: 19625494]
  32. Chromosoma. 2017 Feb;126(1):33-44 [PMID: 27130552]
  33. Nature. 2012 Sep 6;489(7414):57-74 [PMID: 22955616]
  34. J Mol Biol. 1986 Dec 20;192(4):907-18 [PMID: 3586013]
  35. Nat Genet. 2012 Nov;44(11):1191-8 [PMID: 23001124]
  36. Nucleic Acids Res. 2019 Jan 8;47(D1):D163-D169 [PMID: 30335176]
  37. Nature. 2017 Sep 5;549(7670):117-118 [PMID: 28880304]
  38. Anal Biochem. 2017 Jul 15;529:4-9 [PMID: 27210513]
  39. Genome Res. 2009 Sep;19(9):1630-8 [PMID: 19570905]
  40. Bioinformatics. 2011 Mar 15;27(6):889-90 [PMID: 21252075]
  41. Nucleic Acids Res. 2014 Oct 29;42(19):12272-83 [PMID: 25260586]
  42. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Aug;76(2 Pt 1):021923 [PMID: 17930081]
  43. Acta Crystallogr D Struct Biol. 2017 Jun 1;73(Pt 6):541-548 [PMID: 28580916]
  44. Science. 2002 Feb 15;295(5558):1306-11 [PMID: 11847345]
  45. J Mol Biol. 1994 Mar 18;237(1):125-56 [PMID: 8133513]
  46. Phys Biol. 2016 Jun 25;13(3):035006 [PMID: 27345617]
  47. J Comput Chem. 2003 Dec;24(16):2063-74 [PMID: 14531059]
  48. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11163-8 [PMID: 9736707]
  49. Curr Opin Struct Biol. 2015 Apr;31:124-39 [PMID: 26057099]
  50. Nucleic Acids Res. 1989 Mar 11;17(5):1797-803 [PMID: 2928107]
  51. ACS Chem Biol. 2014 Dec 19;9(12):2767-78 [PMID: 25330023]
  52. Bioinformatics. 2009 Dec 1;25(23):3187-8 [PMID: 19789266]

Grants

  1. P20 GM103424/NIGMS NIH HHS

MeSH Term

Chromatin
DNA
Genomics
Nucleosomes
Software

Chemicals

Chromatin
Nucleosomes
DNA

Word Cloud

Created with Highcharts 10.0.0frameworksciencedevelopedpresentedunificationgenomesequence-basedinformaticsthree-dimensional-structure-basedmaterialresearchersapproachestechniquesresultcomputationaltoolsexperimentaltheoreticaldataDNAchromatinusingdesignprinciplesexistingexamplesGenomedashboardsGenomicsHoweverpracticegenomicsutilizedivisionleastparthistoricaldevelopmentsratherfundamentalnecessityunderlyingmodelsindependentlyprimaryinformatics-physics-basedassociatednucleosomesbasedmathematicalrepresentationgeometricallyexactrodsgeneralizationbasepairstepparametersDataenablesintegratestudybiologycanimplementedmodel-view-controllerbrowsersmolecularvisualizationminimalweb-baseddashboardG-Dash-minappliedtwosimpledemonstrateusefulnessproofconceptextensiblecustomizablethereforebroadlyapplicableexpectnumberpurpose-specificemergenovelmeansinvestigatingstructure-functionrelationshipsgenomesrangebasepairsentirechromosomesgeneratingvalidatingtestingmechanistichypothesesDashboards:FrameworkExamples

Similar Articles

Cited By