Coexpression of and Genes From Enhances Pathogen Resistance in Poplar by Increasing the Flavonoid Content.

Qiuxian Bai, Bingbing Duan, Jianchao Ma, Yannan Fen, Shujiao Sun, Qiming Long, Jiaojiao Lv, Dongshi Wan
Author Information
  1. Qiuxian Bai: State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.
  2. Bingbing Duan: State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.
  3. Jianchao Ma: State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.
  4. Yannan Fen: State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.
  5. Shujiao Sun: State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.
  6. Qiming Long: State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.
  7. Jiaojiao Lv: State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.
  8. Dongshi Wan: State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, China.

Abstract

Secondary metabolites of the flavonoid pathway participate in plant defense, and bHLH and MYB transcription factors regulate the synthesis of these metabolites. Here, we define the regulatory mechanisms in response to pathogens. Two transcription factors from var. , and , were overexpressed together in poplar, and transcriptome analysis revealed differences in response to pathogen infection. The transgenic plants showed elevated levels of several key flavonoid pathway components: total phenols, proanthocyanidins (PAs), and anthocyanins and intermediates quercetin and kaempferol. Furthermore, and overexpression in poplar enhanced antioxidase activities and HO release and also increased resistance to and infection. Gene expression profile analysis showed most genes involved in the flavonoid biosynthesis pathway or antioxidant response to be upregulated in /-OE poplar, but significant differential expression occurred in response to pathogen infection. Specifically, expression of (flavanone 3-hydroxylase), (dihydroflavonol 4-seductase), (anthocyanin synthase), and (anthocyanin reductase), which function in initial, middle, and final steps of anthocyanin and PA biosynthesis, respectively, was significantly upregulated in -infected /-OE poplar. Our results highlight that PalbHLH1 and PalMYB90 function as transcriptional activators of flavonoid pathway secondary-metabolite synthesis genes, with differential mechanisms in response to bacterial or fungal infection.

Keywords

References

  1. Nat Commun. 2018 Oct 12;9(1):4226 [PMID: 30315167]
  2. Nat Commun. 2015 Oct 26;6:8635 [PMID: 26497596]
  3. Curr Opin Plant Biol. 2002 Jun;5(3):218-23 [PMID: 11960739]
  4. Tree Physiol. 2015 Oct;35(10):1129-39 [PMID: 26423133]
  5. Plant J. 2006 Nov;48(4):592-605 [PMID: 17059405]
  6. Plant Physiol. 2017 Dec;175(4):1560-1578 [PMID: 29070515]
  7. Tree Physiol. 2016 Sep;36(9):1162-76 [PMID: 27259636]
  8. Tree Physiol. 2012 Oct;32(10):1313-20 [PMID: 22971569]
  9. Science. 2006 Sep 15;313(5793):1596-604 [PMID: 16973872]
  10. BMC Plant Biol. 2017 Mar 23;17(1):65 [PMID: 28335727]
  11. New Phytol. 2006;172(1):47-62 [PMID: 16945088]
  12. Plant J. 2004 Aug;39(3):366-80 [PMID: 15255866]
  13. Curr Biol. 2013 Jun 17;23(12):1094-100 [PMID: 23707429]
  14. New Phytol. 2005 Jan;165(1):9-28 [PMID: 15720617]
  15. Curr Opin Biotechnol. 2013 Apr;24(2):329-35 [PMID: 22901316]
  16. Biotechnol Lett. 2011 Mar;33(3):433-41 [PMID: 21053046]
  17. J Agric Food Chem. 2005 Jan 26;53(2):272-81 [PMID: 15656661]
  18. Plant Signal Behav. 2011 May;6(5):709-11 [PMID: 21448007]
  19. Annu Rev Plant Biol. 2006;57:405-30 [PMID: 16669768]
  20. J Plant Physiol. 2011 Feb 15;168(3):204-12 [PMID: 20850892]
  21. Nat Protoc. 2012 Mar 01;7(3):562-78 [PMID: 22383036]
  22. Nat Biotechnol. 2008 Nov;26(11):1301-8 [PMID: 18953354]
  23. J Biomed Biotechnol. 2004;2004(5):314-320 [PMID: 15577195]
  24. Plant J. 2014 Feb;77(3):367-79 [PMID: 24274116]
  25. Nat Commun. 2013;4:2797 [PMID: 24256998]
  26. J Exp Bot. 2016 Apr;67(8):2159-76 [PMID: 26884602]
  27. Tree Physiol. 2010 Dec;30(12):1599-605 [PMID: 21084346]
  28. PLoS One. 2013 May 31;8(5):e64664 [PMID: 23741362]
  29. Mol Plant Microbe Interact. 2007 Jul;20(7):816-31 [PMID: 17601169]
  30. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  31. Phytopathology. 2001 Nov;91(11):1081-4 [PMID: 18943444]
  32. Front Plant Sci. 2016 Feb 02;7:51 [PMID: 26870068]
  33. Plant Physiol. 2019 Jul;180(3):1362-1374 [PMID: 31092697]
  34. J Exp Bot. 2012 Apr;63(7):2513-24 [PMID: 22268151]
  35. Mol Biol Evol. 2003 May;20(5):735-47 [PMID: 12679534]
  36. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  37. Nat Commun. 2017 Dec 7;8(1):1975 [PMID: 29213047]
  38. Plant Physiol. 2007 Jan;143(1):504-16 [PMID: 17098849]
  39. PLoS One. 2013 Aug 01;8(8):e70778 [PMID: 23936468]
  40. Plant Biotechnol J. 2019 Feb;17(2):451-460 [PMID: 30044051]
  41. J Exp Bot. 2011 May;62(8):2465-83 [PMID: 21278228]
  42. Arch Biochem Biophys. 1996 Aug 1;332(1):183-6 [PMID: 8806724]
  43. Nature. 2001 Jun 14;411(6839):843-7 [PMID: 11459067]
  44. Genetica. 2015 Apr;143(2):225-39 [PMID: 25233990]
  45. Annu Rev Phytopathol. 1995;33:299-321 [PMID: 18999963]
  46. Appl Microbiol Biotechnol. 2013 Jul;97(13):5669-79 [PMID: 23681587]
  47. Trends Plant Sci. 2005 May;10(5):236-42 [PMID: 15882656]
  48. Plant J. 2017 Apr;90(2):276-292 [PMID: 28107780]