Biosynthetic Incorporation of Site-Specific Isotopes in β-Lactam Antibiotics Enables Biophysical Studies.

Jacek Kozuch, Samuel H Schneider, Steven G Boxer
Author Information
  1. Jacek Kozuch: Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States.
  2. Samuel H Schneider: Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States. ORCID
  3. Steven G Boxer: Department of Chemistry, Stanford University, Stanford, California 94305-5012, United States. ORCID

Abstract

A biophysical understanding of the mechanistic, chemical, and physical origins underlying antibiotic action and resistance is vital to the discovery of novel therapeutics and the development of strategies to combat the growing emergence of antibiotic resistance. The site-specific introduction of stable-isotope labels into chemically complex natural products is particularly important for techniques such as NMR, IR, mass spectrometry, imaging, and kinetic isotope effects. Toward this goal, we developed a biosynthetic strategy for the site-specific incorporation of C labels into the canonical β-lactam carbonyl of penicillin G and cefotaxime, the latter via cephalosporin C. This was achieved through sulfur-replacement with 1-C-l-cysteine, resulting in high isotope incorporations and milligram-scale yields. Using C NMR and isotope-edited IR difference spectroscopy, we illustrate how these molecules can be used to interrogate interactions with their protein targets, e.g., TEM-1 β-lactamase. This method provides a feasible route to isotopically labeled penicillin and cephalosporin precursors for future biophysical studies.

References

  1. Nature. 2017 Apr 27;544(7651):465-470 [PMID: 28424513]
  2. Appl Microbiol. 1966 Sep;14(5):746-53 [PMID: 6008128]
  3. Appl Microbiol Biotechnol. 2003 Jun;61(5-6):385-92 [PMID: 12679848]
  4. J Phys Chem B. 2017 Mar 16;121(10):2331-2338 [PMID: 28225620]
  5. Biochem J. 1963 Jun;87:648-52 [PMID: 14011779]
  6. J Phys Chem B. 2016 Sep 15;120(36):9672-84 [PMID: 27541577]
  7. Cold Spring Harb Perspect Med. 2016 Aug 01;6(8): [PMID: 27329032]
  8. Appl Environ Microbiol. 2010 Nov;76(21):7109-15 [PMID: 20851974]
  9. Antimicrob Agents Chemother. 1975 Jul;8(1):15-7 [PMID: 809001]
  10. Biochemistry. 1980 Jun 24;19(13):2895-901 [PMID: 6994800]
  11. Biochemistry. 1984 Nov 20;23(24):5833-9 [PMID: 6098299]
  12. J Am Chem Soc. 1947 Dec;69(12):3010-7 [PMID: 18919705]
  13. Biotechnol J. 2012 Feb;7(2):225-36 [PMID: 22057844]
  14. Biochemistry. 2003 Feb 25;42(7):1950-7 [PMID: 12590581]
  15. Arch Biochem Biophys. 1963 Nov;103:216-26 [PMID: 14084584]
  16. J Am Chem Soc. 2010 Sep 22;132(37):12811-3 [PMID: 20806897]
  17. Arch Biochem Biophys. 2005 Jan 1;433(1):2-12 [PMID: 15581561]
  18. Front Microbiol. 2018 Nov 15;9:2768 [PMID: 30524395]
  19. Nature. 1992 Oct 22;359(6397):700-5 [PMID: 1436034]
  20. Biochem J. 1999 Feb 1;337 ( Pt 3):379-85 [PMID: 9895280]
  21. Biochemistry. 2016 Jan 12;55(1):157-66 [PMID: 26652185]
  22. Plant Physiol. 1970 Nov;46(5):720-7 [PMID: 16657536]
  23. ACS Catal. 2018 Apr 6;8(4):2741-2747 [PMID: 30637173]
  24. J Bacteriol. 1999 Dec;181(23):7228-34 [PMID: 10572125]
  25. J Phys Chem B. 2019 Jun 6;123(22):4625-4635 [PMID: 31070373]
  26. J Am Chem Soc. 2012 Dec 26;134(51):20589-92 [PMID: 23215000]
  27. Angew Chem Int Ed Engl. 2000 Jan;39(1):44-122 [PMID: 10649349]
  28. Annu Rev Biochem. 2017 Jun 20;86:387-415 [PMID: 28375745]
  29. Appl Environ Microbiol. 2012 Oct;78(19):7107-13 [PMID: 22865068]
  30. J Proteomics. 2017 Mar 6;156:52-62 [PMID: 28062375]
  31. J Biol Chem. 2013 Sep 27;288(39):27960-71 [PMID: 23913691]
  32. Biochem J. 1967 Jun;103(3):902-12 [PMID: 6069168]
  33. Mol Cell Proteomics. 2010 Jun;9(6):1182-98 [PMID: 20154335]
  34. J Am Chem Soc. 2016 Aug 10;138(31):9996-10001 [PMID: 27447959]
  35. Biotechnol Bioeng. 2000 Jun 20;68(6):652-9 [PMID: 10799990]
  36. J Gen Microbiol. 1949 Jan;3(1):19-31 [PMID: 18126504]
  37. J Phys Chem Lett. 2014 Sep 18;5(18):3211-5 [PMID: 26276334]
  38. Biochemistry. 1999 Mar 30;38(13):3851-6 [PMID: 10194295]
  39. J Biol Chem. 1956 Mar;219(1):405-9 [PMID: 13295294]
  40. Elife. 2016 Oct 21;5: [PMID: 27767957]
  41. Trends Biotechnol. 2002 Dec;20(12):502-7 [PMID: 12443871]
  42. Acc Chem Res. 2015 Apr 21;48(4):998-1006 [PMID: 25799082]
  43. Farmaco. 2000 May;55(5):393-6 [PMID: 10983286]

Grants

  1. R35 GM118044/NIGMS NIH HHS

MeSH Term

Anti-Bacterial Agents
Binding Sites
Carbon Isotopes
Cefotaxime
Cephalosporins
Drug Discovery
Drug Resistance, Microbial
Penicillin G
Penicillium
Protein Conformation
beta-Lactamases
beta-Lactams

Chemicals

Anti-Bacterial Agents
Carbon Isotopes
Cephalosporins
beta-Lactams
cephalosporin C
beta-Lactamases
beta-lactamase TEM-1
Cefotaxime
Penicillin G

Word Cloud

Created with Highcharts 10.0.0Cbiophysicalantibioticresistancesite-specificlabelsNMRIRisotopepenicillincephalosporinunderstandingmechanisticchemicalphysicaloriginsunderlyingactionvitaldiscoverynoveltherapeuticsdevelopmentstrategiescombatgrowingemergenceintroductionstable-isotopechemicallycomplexnaturalproductsparticularlyimportanttechniquesmassspectrometryimagingkineticeffectsTowardgoaldevelopedbiosyntheticstrategyincorporationcanonicalβ-lactamcarbonylGcefotaximelatterviaachievedsulfur-replacement1-C-l-cysteineresultinghighincorporationsmilligram-scaleyieldsUsingisotope-editeddifferencespectroscopyillustratemoleculescanusedinterrogateinteractionsproteintargetsegTEM-1β-lactamasemethodprovidesfeasiblerouteisotopicallylabeledprecursorsfuturestudiesBiosyntheticIncorporationSite-SpecificIsotopesβ-LactamAntibioticsEnablesBiophysicalStudies

Similar Articles

Cited By