Dynamic FoxP2 levels in male zebra finches are linked to morphology of adult-born Area X medium spiny neurons.

Jennifer Kosubek-Langer, Constance Scharff
Author Information
  1. Jennifer Kosubek-Langer: Department of Animal Behavior, Institute of Biology, Freie Universität Berlin, Berlin, Germany. kosubekla@zedat.fu-berlin.de.
  2. Constance Scharff: Department of Animal Behavior, Institute of Biology, Freie Universität Berlin, Berlin, Germany.

Abstract

The transcription factor FOXP2 is crucial for the formation and function of cortico-striatal circuits. FOXP2 mutations are associated with specific speech and language impairments. In songbirds, experimentally altered FoxP2 expression levels in the striatal song nucleus Area X impair vocal learning and song production. Overall FoxP2 protein levels in Area X are low in adult zebra finches and decrease further with singing. However, some Area X medium spiny neurons (MSNs) express FoxP2 at high levels (FoxP2 MSNs) and singing does not change this. Because Area X receives many new neurons throughout adulthood, we hypothesized that the FoxP2 MSNs are newly recruited neurons, not yet integrated into the local Area X circuitry and thus not active during singing. Contrary to our expectation, FoxP2 protein levels did not predict whether new MSNs were active during singing, assayed via immediate early gene expression. However, new FoxP2 MSNs had more complex dendrites, higher spine density and more mushroom spines than new FoxP2 MSNs. In addition, FoxP2 expression levels correlated positively with nucleus size of new MSNs. Together, our data suggest that dynamic FoxP2 levels in new MSNs shape their morphology during maturation and their incorporation into a neural circuit that enables the maintenance and social modulation of adult birdsong.

References

  1. Lai, C. S., Fisher, S. E., Hurst, J. A., Vargha-Khadem, F. & Monaco, A. P. A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 413, 519–523, https://doi.org/10.1038/35097076 (2001). [DOI: 10.1038/35097076]
  2. Deriziotis, P. & Fisher, S. E. Speech and Language: Translating the Genome. Trends Genet 33, 642–656, https://doi.org/10.1016/j.tig.2017.07.002 (2017). [DOI: 10.1016/j.tig.2017.07.002]
  3. Morgan, A., Fisher, S. E., Scheffer, I. & Hildebrand, M. In GeneReviews (eds Adam, M. P. et al.) (2016).
  4. Wohlgemuth, S., Adam, I. & Scharff, C. FoxP2 in songbirds. Curr Opin Neurobiol 28, 86–93, https://doi.org/10.1016/j.conb.2014.06.009 (2014). [DOI: 10.1016/j.conb.2014.06.009]
  5. Teramitsu, I., Kudo, L. C., London, S. E., Geschwind, D. H. & White, S. A. Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction. J Neurosci 24, 3152–3163, https://doi.org/10.1523/JNEUROSCI.5589-03.2004 (2004). [DOI: 10.1523/JNEUROSCI.5589-03.2004]
  6. Lai, C. S., Gerrelli, D., Monaco, A. P., Fisher, S. E. & Copp, A. J. FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder. Brain 126, 2455–2462, https://doi.org/10.1093/brain/awg247 (2003). [DOI: 10.1093/brain/awg247]
  7. Haesler, S. et al. FoxP2 expression in avian vocal learners and non-learners. J Neurosci 24, 3164–3175, https://doi.org/10.1523/JNEUROSCI.4369-03.2004 (2004). [DOI: 10.1523/JNEUROSCI.4369-03.2004]
  8. Heston, J. B. & White, S. A. Behavior-Linked FoxP2 Regulation Enables Zebra Finch Vocal Learning. J Neurosci 35, 2885–2894, https://doi.org/10.1523/JNEUROSCI.3715-14.2015 (2015). [DOI: 10.1523/JNEUROSCI.3715-14.2015]
  9. Haesler, S. et al. Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. PLoS Biol 5, e321, https://doi.org/10.1371/journal.pbio.0050321 (2007). [DOI: 10.1371/journal.pbio.0050321]
  10. Norton, P., Barschke, P., Scharff, C. & Mendoza, E. Differential Song Deficits after Lentivirus-Mediated Knockdown of FoxP1, FoxP2, or FoxP4 in Area X of Juvenile Zebra Finches. J Neurosci 39, 9782–9796, https://doi.org/10.1523/JNEUROSCI.1250-19.2019 (2019). [DOI: 10.1523/JNEUROSCI.1250-19.2019]
  11. Vargha-Khadem, F. et al. Neural basis of an inherited speech and language disorder. Proc Natl Acad Sci USA 95, 12695–12700, https://doi.org/10.1073/pnas.95.21.12695 (1998). [DOI: 10.1073/pnas.95.21.12695]
  12. Day, N. F., Hobbs, T. G., Heston, J. B. & White, S. A. Beyond Critical Period Learning: Striatal FoxP2 Affects the Active Maintenance of Learned Vocalizations in Adulthood. eNeuro 6, https://doi.org/10.1523/ENEURO.0071-19.2019 (2019). [DOI: 10.1523/ENEURO.0071-19.2019]
  13. Murugan, M., Harward, S., Scharff, C. & Mooney, R. Diminished FoxP2 levels affect dopaminergic modulation of corticostriatal signaling important to song variability. Neuron 80, 1464–1476, https://doi.org/10.1016/j.neuron.2013.09.021 (2013). [DOI: 10.1016/j.neuron.2013.09.021]
  14. Tsui, D., Vessey, J. P., Tomita, H., Kaplan, D. R. & Miller, F. D. FoxP2 regulates neurogenesis during embryonic cortical development. J Neurosci 33, 244–258, https://doi.org/10.1523/JNEUROSCI.1665-12.2013 (2013). [DOI: 10.1523/JNEUROSCI.1665-12.2013]
  15. Garcia-Calero, E., Botella-Lopez, A., Bahamonde, O., Perez-Balaguer, A. & Martinez, S. FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon. Brain Struct Funct 221, 2905–2917, https://doi.org/10.1007/s00429-015-1079-7 (2016). [DOI: 10.1007/s00429-015-1079-7]
  16. Clovis, Y. M., Enard, W., Marinaro, F., Huttner, W. B. & De Pietri Tonelli, D. Convergent repression of Foxp2 3′UTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons. Development 139, 3332–3342, https://doi.org/10.1242/dev.078063 (2012). [DOI: 10.1242/dev.078063]
  17. Kast, R. J., Lanjewar, A. L., Smith, C. D. & Levitt, P. FOXP2 exhibits projection neuron class specific expression, but is not required for multiple aspects of cortical histogenesis. Elife 8, https://doi.org/10.7554/eLife.42012 (2019).
  18. Chiu, Y. C. et al. Foxp2 regulates neuronal differentiation and neuronal subtype specification. Dev Neurobiol 74, 723–738, https://doi.org/10.1002/dneu.22166 (2014). [DOI: 10.1002/dneu.22166]
  19. Chen, Y. C. et al. Foxp2 controls synaptic wiring of corticostriatal circuits and vocal communication by opposing Mef2c. Nat Neurosci, https://doi.org/10.1038/nn.4380 (2016). [DOI: 10.1038/nn.4380]
  20. Groszer, M. et al. Impaired synaptic plasticity and motor learning in mice with a point mutation implicated in human speech deficits. Curr Biol 18, 354–362, https://doi.org/10.1016/j.cub.2008.01.060 (2008). [DOI: 10.1016/j.cub.2008.01.060]
  21. French, C. A. et al. An aetiological Foxp2 mutation causes aberrant striatal activity and alters plasticity during skill learning. Mol Psychiatry 17, 1077–1085, https://doi.org/10.1038/mp.2011.105 (2012). [DOI: 10.1038/mp.2011.105]
  22. French, C. A. et al. Differential effects of Foxp2 disruption in distinct motor circuits. Mol Psychiatry 24, 447–462, https://doi.org/10.1038/s41380-018-0199-x (2019). [DOI: 10.1038/s41380-018-0199-x]
  23. van Rhijn, J. R., Fisher, S. E., Vernes, S. C. & Nadif Kasri, N. Foxp2 loss of function increases striatal direct pathway inhibition via increased GABA release. Brain Struct Funct 223, 4211–4226, https://doi.org/10.1007/s00429-018-1746-6 (2018). [DOI: 10.1007/s00429-018-1746-6]
  24. Thompson, C. K. et al. Young and intense: FoxP2 immunoreactivity in Area X varies with age, song stereotypy, and singing in male zebra finches. Front Neural Circuits 7, 24, https://doi.org/10.3389/fncir.2013.00024 (2013). [DOI: 10.3389/fncir.2013.00024]
  25. Teramitsu, I. & White, S. A. FoxP2 regulation during undirected singing in adult songbirds. J Neurosci 26, 7390–7394, https://doi.org/10.1523/JNEUROSCI.1662-06.2006 (2006). [DOI: 10.1523/JNEUROSCI.1662-06.2006]
  26. Miller, J. E. et al. Birdsong decreases protein levels of FoxP2, a molecule required for human speech. J Neurophysiol 100, 2015–2025, https://doi.org/10.1152/jn.90415.2008 (2008). [DOI: 10.1152/jn.90415.2008]
  27. Teramitsu, I., Poopatanapong, A., Torrisi, S. & White, S. A. Striatal FoxP2 is actively regulated during songbird sensorimotor learning. PLoS One 5, e8548, https://doi.org/10.1371/journal.pone.0008548 (2010). [DOI: 10.1371/journal.pone.0008548]
  28. Alvarez-Buylla, A., Kirn, J. R. & Nottebohm, F. Birth of projection neurons in adult avian brain may be related to perceptual or motor learning. Science 249, 1444–1446 (1990). [DOI: 10.1126/science.1698312]
  29. Alvarez-Buylla, A., Ling, C. Y. & Yu, W. S. Contribution of neurons born during embryonic, juvenile, and adult life to the brain of adult canaries: regional specificity and delayed birth of neurons in the song-control nuclei. J Comp Neurol 347, 233–248, https://doi.org/10.1002/cne.903470207 (1994). [DOI: 10.1002/cne.903470207]
  30. Lipkind, D., Nottebohm, F., Rado, R. & Barnea, A. Social change affects the survival of new neurons in the forebrain of adult songbirds. Behav Brain Res 133, 31–43, https://doi.org/10.1016/s0166-4328(01)00416-8 (2002). [DOI: 10.1016/s0166-4328(01)00416-8]
  31. Rochefort, C., He, X., Scotto-Lomassese, S. & Scharff, C. Recruitment of FoxP2-expressing neurons to area X varies during song development. Dev Neurobiol 67, 809–817, https://doi.org/10.1002/dneu.20393 (2007). [DOI: 10.1002/dneu.20393]
  32. Barnea, A. & Pravosudov, V. Birds as a model to study adult neurogenesis: bridging evolutionary, comparative and neuroethological approaches. Eur J Neurosci 34, 884–907, https://doi.org/10.1111/j.1460-9568.2011.07851.x (2011). [DOI: 10.1111/j.1460-9568.2011.07851.x]
  33. Pytte, C. L. Adult Neurogenesis in the Songbird: Region-Specific Contributions of New Neurons to Behavioral Plasticity and Stability. Brain Behav Evol 87, 191–204, https://doi.org/10.1159/000447048 (2016). [DOI: 10.1159/000447048]
  34. Kosubek-Langer, J., Schulze, L. & Scharff, C. Maturation, Behavioral Activation, and Connectivity of Adult-Born Medium Spiny Neurons in a Striatal Song Nucleus. Front Neurosci 11, 323, https://doi.org/10.3389/fnins.2017.00323 (2017). [DOI: 10.3389/fnins.2017.00323]
  35. Vernes, S. C. et al. Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLoS Genet 7, e1002145, https://doi.org/10.1371/journal.pgen.1002145 (2011). [DOI: 10.1371/journal.pgen.1002145]
  36. Enard, W. et al. A humanized version of Foxp2 affects cortico-basal ganglia circuits in mice. Cell 137, 961–971, https://doi.org/10.1016/j.cell.2009.03.041 (2009). [DOI: 10.1016/j.cell.2009.03.041]
  37. Reimers-Kipping, S., Hevers, W., Paabo, S. & Enard, W. Humanized Foxp2 specifically affects cortico-basal ganglia circuits. Neuroscience 175, 75–84, https://doi.org/10.1016/j.neuroscience.2010.11.042 (2011). [DOI: 10.1016/j.neuroscience.2010.11.042]
  38. Stanley, G., Gokce, O., Malenka, R. C., Sudhof, T. C. & Quake, S. R. Continuous and Discrete Neuron Types of the Adult Murine Striatum. Neuron, https://doi.org/10.1016/j.neuron.2019.11.004 (2019). [DOI: 10.1016/j.neuron.2019.11.004]
  39. Gertler, T. S., Chan, C. S. & Surmeier, D. J. Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci 28, 10814–10824, https://doi.org/10.1523/JNEUROSCI.2660-08.2008 (2008). [DOI: 10.1523/JNEUROSCI.2660-08.2008]
  40. Jarvis, E. D., Scharff, C., Grossman, M. R., Ramos, J. A. & Nottebohm, F. For whom the bird sings: context-dependent gene expression. Neuron 21, 775–788 (1998). [DOI: 10.1016/S0896-6273(00)80594-2]
  41. Mello, C. V. & Ribeiro, S. ZENK protein regulation by song in the brain of songbirds. J Comp Neurol 393, 426–438 (1998). [DOI: 10.1002/(SICI)1096-9861(19980420)393]
  42. Knapska, E. & Kaczmarek, L. A gene for neuronal plasticity in the mammalian brain: Zif268/Egr-1/NGFI-A/Krox-24/TIS8/ZENK? Prog Neurobiol 74, 183–211, https://doi.org/10.1016/j.pneurobio.2004.05.007 (2004). [DOI: 10.1016/j.pneurobio.2004.05.007]
  43. Hessler, N. A. & Doupe, A. J. Social context modulates singing-related neural activity in the songbird forebrain. Nat Neurosci 2, 209–211, https://doi.org/10.1038/6306 (1999). [DOI: 10.1038/6306]
  44. Zengin-Toktas, Y. & Woolley, S. C. Singing modulates parvalbumin interneurons throughout songbird forebrain vocal control circuitry. PLoS One 12, e0172944, https://doi.org/10.1371/journal.pone.0172944 (2017). [DOI: 10.1371/journal.pone.0172944]
  45. Schmidt, M. F. & Konishi, M. Gating of auditory responses in the vocal control system of awake songbirds. Nat Neurosci 1, 513–518, https://doi.org/10.1038/2232 (1998). [DOI: 10.1038/2232]
  46. Warren, W. C. et al. The genome of a songbird. Nature 464, 757–762, https://doi.org/10.1038/nature08819 (2010). [DOI: 10.1038/nature08819]
  47. Veyrac, A. et al. Zif268/egr1 gene controls the selection, maturation and functional integration of adult hippocampal newborn neurons by learning. Proc Natl Acad Sci USA 110, 7062–7067, https://doi.org/10.1073/pnas.1220558110 (2013). [DOI: 10.1073/pnas.1220558110]
  48. Schulz, S. B., Haesler, S., Scharff, C. & Rochefort, C. Knockdown of FoxP2 alters spine density in Area X of the zebra finch. Genes Brain Behav 9, 732–740, https://doi.org/10.1111/j.1601-183X.2010.00607.x (2010). [DOI: 10.1111/j.1601-183X.2010.00607.x]
  49. Spiteri, E. et al. Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. Am J Hum Genet 81, 1144–1157, https://doi.org/10.1086/522237 (2007). [DOI: 10.1086/522237]
  50. Vernes, S. C. et al. High-throughput analysis of promoter occupancy reveals direct neural targets of FOXP2, a gene mutated in speech and language disorders. Am J Hum Genet 81, 1232–1250, https://doi.org/10.1086/522238 (2007). [DOI: 10.1086/522238]
  51. Hickey, S. L., Berto, S. & Konopka, G. Chromatin Decondensation by FOXP2 Promotes Human Neuron Maturation and Expression of Neurodevelopmental Disease Genes. Cell Rep 27, 1699–1711 e1699, https://doi.org/10.1016/j.celrep.2019.04.044 (2019). [DOI: 10.1016/j.celrep.2019.04.044]
  52. Konopka, G. et al. Human-specific transcriptional regulation of CNS development genes by FOXP2. Nature 462, 213–217, https://doi.org/10.1038/nature08549 (2009). [DOI: 10.1038/nature08549]
  53. Adam, I., Mendoza, E., Kobalz, U., Wohlgemuth, S. & Scharff, C. FoxP2 directly regulates the reelin receptor VLDLR developmentally and by singing. Mol Cell Neurosci 74, 96–105, https://doi.org/10.1016/j.mcn.2016.04.002 (2016). [DOI: 10.1016/j.mcn.2016.04.002]
  54. Adam, I., Mendoza, E., Kobalz, U., Wohlgemuth, S. & Scharff, C. CNTNAP2 is a direct FoxP2 target in vitro and in vivo in zebra finches: complex regulation by age and activity. Genes Brain Behav 16, 635–642, https://doi.org/10.1111/gbb.12390 (2017). [DOI: 10.1111/gbb.12390]
  55. Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V. & Di Filippo, M. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat Neurosci 17, 1022–1030, https://doi.org/10.1038/nn.3743 (2014). [DOI: 10.1038/nn.3743]
  56. Farries, M. A., Ding, L. & Perkel, D. J. Evidence for “direct” and “indirect” pathways through the song system basal ganglia. J Comp Neurol 484, 93–104, https://doi.org/10.1002/cne.20464 (2005). [DOI: 10.1002/cne.20464]
  57. Pidoux, M., Bollu, T., Riccelli, T. & Goldberg, J. H. Origins of basal ganglia output signals in singing juvenile birds. J Neurophysiol 113, 843–855, https://doi.org/10.1152/jn.00635.2014 (2015). [DOI: 10.1152/jn.00635.2014]
  58. Kubikova, L., Wada, K. & Jarvis, E. D. Dopamine receptors in a songbird brain. J Comp Neurol 518, 741–769, https://doi.org/10.1002/cne.22255 (2010). [DOI: 10.1002/cne.22255]
  59. Perkel, D. J., Farries, M. A., Luo, M. & Ding, L. Electrophysiological analysis of a songbird basal ganglia circuit essential for vocal plasticity. Brain Res Bull 57, 529–532, https://doi.org/10.1016/s0361-9230(01)00690-6 (2002). [DOI: 10.1016/s0361-9230(01)00690-6]
  60. Wilbrecht, L. & Kirn, J. R. Neuron addition and loss in the song system: regulation and function. Ann N Y Acad Sci 1016, 659–683, https://doi.org/10.1196/annals.1298.024 (2004). [DOI: 10.1196/annals.1298.024]
  61. Kaestner, K. H., Knochel, W. & Martinez, D. E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14, 142–146 (2000). [PMID: 10702024]
  62. Tchernichovski, O., Nottebohm, F., Ho, C. E., Pesaran, B. & Mitra, P. P. A procedure for an automated measurement of song similarity. Anim Behav 59, 1167–1176, https://doi.org/10.1006/anbe.1999.1416 (2000). [DOI: 10.1006/anbe.1999.1416]
  63. Lois, C., Hong, E. J., Pease, S., Brown, E. J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872, https://doi.org/10.1126/science.1067081 (2002). [DOI: 10.1126/science.1067081]
  64. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676–682, https://doi.org/10.1038/nmeth.2019 (2012). [DOI: 10.1038/nmeth.2019]
  65. Ferreira, T. A. et al. Neuronal morphometry directly from bitmap images. Nat Methods 11, 982–984, https://doi.org/10.1038/nmeth.3125 (2014). [DOI: 10.1038/nmeth.3125]
  66. Sage, D. et al. DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods 115, 28–41, https://doi.org/10.1016/j.ymeth.2016.12.015 (2017). [DOI: 10.1016/j.ymeth.2016.12.015]
  67. Kirshner, H., Aguet, F., Sage, D. & Unser, M. 3-D PSF fitting for fluorescence microscopy: implementation and localization application. J Microsc 249, 13–25, https://doi.org/10.1111/j.1365-2818.2012.03675.x (2013). [DOI: 10.1111/j.1365-2818.2012.03675.x]
  68. Rodriguez, A., Ehlenberger, D. B., Dickstein, D. L., Hof, P. R. & Wearne, S. L. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3, e1997, https://doi.org/10.1371/journal.pone.0001997 (2008). [DOI: 10.1371/journal.pone.0001997]
  69. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).
  70. Wickham, H. gglot2: Elegant Graphics for Data Analysis. (Springer, 2016).

MeSH Term

Animals
Corpus Striatum
Dendrites
Finches
Forkhead Transcription Factors
Gene Expression
Male
Neurons
Vocalization, Animal

Chemicals

Forkhead Transcription Factors