Sorafenib-Loaded Nanoparticles Based on Biodegradable Dendritic Polymers for Enhanced Therapy of Hepatocellular Carcinoma.

Zihuang Li, Ling Ye, Jingwen Liu, Daizheng Lian, Xianming Li
Author Information
  1. Zihuang Li: Department of Radiation Oncology, The Second Clinical Medical College of Jinan University, Shenzhen Municipal People's Hospital, Shenzhen 518020, People's Republic of China.
  2. Ling Ye: Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, People's Republic of China.
  3. Jingwen Liu: Department of Radiation Oncology, The Second Clinical Medical College of Jinan University, Shenzhen Municipal People's Hospital, Shenzhen 518020, People's Republic of China.
  4. Daizheng Lian: Department of Radiation Oncology, The Second Clinical Medical College of Jinan University, Shenzhen Municipal People's Hospital, Shenzhen 518020, People's Republic of China.
  5. Xianming Li: Department of Radiation Oncology, The Second Clinical Medical College of Jinan University, Shenzhen Municipal People's Hospital, Shenzhen 518020, People's Republic of China.

Abstract

PURPOSE: In spite of its enhanced efficacy and reduced side effects in clinical hepatocellular carcinoma (HCC) therapy, the therapeutic efficacy of antitumor angiogenesis inhibitor sorafenib (SFB) is still restricted due to short in vivo half-life and drug resistance. Here, a novel SFB-loaded dendritic polymeric nanoparticle (NP-TPGS-SFB) was developed for enhanced therapy of HCC.
METHODS: NP-TPGS-SFB was fabricated by encapsulating SFB with biodegradable dendritic polymers poly(amidoamine)-poly(γ-benzyl-L-Glutamate)-b-D-α-tocopheryl polyethylene glycol 1000 succinate (PAM-PBLG--TPGS).
RESULTS: NP-TPGS-SFB exhibited excellent stability and achieved acid-responsive release of SFB. It also exhibited much higher cellular uptake efficiency in HepG2 human liver cells than PEG-conjugated NP (NP-PEG-SFB). Furthermore, MTT assay confirmed that NP-TPGS-SFB induced higher cytotoxicity than NP-PEG-SFB and free SFB, respectively. Lastly, NP-TPGS-SFB significantly inhibited tumor growth in mice bearing HepG2 xenografts, with negligible side effects.
CONCLUSION: Our result suggests that NP-TPGS-SFB may be a novel approach for enhanced therapy of HCC with promising potential.

Keywords

References

  1. N Engl J Med. 2008 Jul 24;359(4):378-90 [PMID: 18650514]
  2. J Control Release. 2003 Jan 9;86(1):33-48 [PMID: 12490371]
  3. Nature. 2011 May 19;473(7347):298-307 [PMID: 21593862]
  4. Theranostics. 2017 Mar 5;7(5):1192-1203 [PMID: 28435458]
  5. J Hepatol. 2004 Nov;41(5):864-80 [PMID: 15519663]
  6. J Hepatol. 2010 Jul;53(1):132-44 [PMID: 20447716]
  7. CA Cancer J Clin. 2015 Mar;65(2):87-108 [PMID: 25651787]
  8. Int J Nanomedicine. 2016 May 25;11:2329-43 [PMID: 27307733]
  9. ACS Biomater Sci Eng. 2018 May 14;4(5):1679-1686 [PMID: 33445324]
  10. Biomaterials. 2011 Sep;32(27):6595-605 [PMID: 21663960]
  11. Biomaterials. 2009 Oct;30(29):5757-66 [PMID: 19643472]
  12. Biomaterials. 2012 Jun;33(19):4889-906 [PMID: 22498300]
  13. Adv Drug Deliv Rev. 2015 Aug 30;91:7-22 [PMID: 25308250]
  14. Lancet Oncol. 2009 Jan;10(1):25-34 [PMID: 19095497]
  15. J Pharm Biomed Anal. 2009 May 1;49(4):1109-14 [PMID: 19278805]
  16. Pharmaceutics. 2019 May 21;11(5): [PMID: 31117238]
  17. J Clin Oncol. 2013 Jun 10;31(17):2205-18 [PMID: 23669226]
  18. Angew Chem Int Ed Engl. 2019 Apr 1;58(15):4901-4905 [PMID: 30561882]
  19. Biomaterials. 2013 Aug;34(25):6058-67 [PMID: 23694904]
  20. Eur J Pharm Sci. 2013 May 13;49(2):175-86 [PMID: 23485439]
  21. Mol Pharm. 2012 Feb 6;9(2):248-60 [PMID: 22204437]
  22. ACS Nano. 2015;9(4):3740-52 [PMID: 25831471]
  23. Biomacromolecules. 2013 Jun 10;14(6):1826-37 [PMID: 23607866]
  24. Pharmaceutics. 2018 Nov 28;10(4): [PMID: 30487449]
  25. Eur J Pharm Biopharm. 2007 Mar;65(3):309-19 [PMID: 17257817]
  26. J Control Release. 2016 Jan 10;221:62-70 [PMID: 26551344]
  27. Nat Rev Cancer. 2017 Jan;17(1):20-37 [PMID: 27834398]
  28. Pharmaceutics. 2017 Oct 14;9(4): [PMID: 29036899]
  29. ACS Appl Mater Interfaces. 2017 Jan 11;9(1):112-119 [PMID: 27966356]
  30. Front Pharmacol. 2018 Feb 21;9:119 [PMID: 29515445]
  31. Pharmaceutics. 2018 Nov 10;10(4): [PMID: 30423797]
  32. Biomaterials. 2013 Nov;34(33):8323-8332 [PMID: 23932288]
  33. Cell. 2012 Feb 3;148(3):399-408 [PMID: 22304911]
  34. Nat Mater. 2013 Nov;12(11):958-62 [PMID: 24150413]
  35. Breast Cancer Res Treat. 2008 Mar;108(2):241-50 [PMID: 17476588]
  36. Nat Rev Cancer. 2005 Mar;5(3):161-71 [PMID: 15738981]
  37. J Control Release. 2014 Sep 28;190:465-76 [PMID: 24993430]
  38. Biomaterials. 2010 Apr;31(10):2882-92 [PMID: 20053435]
  39. Mater Sci Eng C Mater Biol Appl. 2017 Jun 1;75:1042-1048 [PMID: 28415388]

MeSH Term

Animals
Antineoplastic Agents
Carcinoma, Hepatocellular
Dendrimers
Drug Delivery Systems
Hep G2 Cells
Humans
Liver Neoplasms
Mice
Nanoparticles
Polymers
Sorafenib
Vitamin E
Xenograft Model Antitumor Assays

Chemicals

Antineoplastic Agents
Dendrimers
Polymers
Vitamin E
Sorafenib
tocophersolan

Word Cloud

Created with Highcharts 10.0.0NP-TPGS-SFBenhancedtherapySFBHCCdendriticefficacysideeffectshepatocellularcarcinomasorafenibnovelexhibitedhigherHepG2NP-PEG-SFBPURPOSE:spitereducedclinicaltherapeuticantitumorangiogenesisinhibitorstillrestricteddueshortvivohalf-lifedrugresistanceSFB-loadedpolymericnanoparticledevelopedMETHODS:fabricatedencapsulatingbiodegradablepolymerspolyamidoamine-polyγ-benzyl-L-Glutamate-b-D-α-tocopherylpolyethyleneglycol1000succinatePAM-PBLG--TPGSRESULTS:excellentstabilityachievedacid-responsivereleasealsomuchcellularuptakeefficiencyhumanlivercellsPEG-conjugatedNPFurthermoreMTTassayconfirmedinducedcytotoxicityfreerespectivelyLastlysignificantlyinhibitedtumorgrowthmicebearingxenograftsnegligibleCONCLUSION:resultsuggestsmayapproachpromisingpotentialSorafenib-LoadedNanoparticlesBasedBiodegradableDendriticPolymersEnhancedTherapyHepatocellularCarcinomaTPGSblockcopolymer

Similar Articles

Cited By