Fiber reinforced GelMA hydrogel to induce the regeneration of corneal stroma.

Bin Kong, Yun Chen, Rui Liu, Xi Liu, Changyong Liu, Zengwu Shao, Liming Xiong, Xianning Liu, Wei Sun, Shengli Mi
Author Information
  1. Bin Kong: Macromolecular Platforms for Translational Medicine and Bio-Manufacturing Laboratory, Tsinghua-Berkeley Shenzhen Institute, 518055, Shenzhen, P.R. China.
  2. Yun Chen: Open FIESTA Center, Tsinghua Shenzhen International Graduate School, 518055, Shenzhen, P.R. China. ORCID
  3. Rui Liu: Biomanufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, 518055, Shenzhen, P.R. China.
  4. Xi Liu: Beijing Children's Hospital, 100045, Beijing, P.R. China.
  5. Changyong Liu: Additive Manufacturing Research Institute, College of Mechatronics and Control Engineering, Shenzhen University, 518060, Shenzhen, P.R. China.
  6. Zengwu Shao: Tongji Medical College, Huazhong University Science & Technology, 430022, Wuhan, P.R. China.
  7. Liming Xiong: Tongji Medical College, Huazhong University Science & Technology, 430022, Wuhan, P.R. China.
  8. Xianning Liu: Shaanxi Institute of Ophthalmology, 710002, Xi'an, P.R. China.
  9. Wei Sun: Macromolecular Platforms for Translational Medicine and Bio-Manufacturing Laboratory, Tsinghua-Berkeley Shenzhen Institute, 518055, Shenzhen, P.R. China. sunwei@drexel.edu.
  10. Shengli Mi: Biomanufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, 518055, Shenzhen, P.R. China. mi.shengli@sz.tsinghua.edu.cn.

Abstract

Regeneration of corneal stroma has always been a challenge due to its sophisticated structure and keratocyte-fibroblast transformation. In this study, we fabricate grid poly (ε-caprolactone)-poly (ethylene glycol) microfibrous scaffold and infuse the scaffold with gelatin methacrylate (GelMA) hydrogel to obtain a 3 D fiber hydrogel construct; the fiber spacing is adjusted to fabricate optimal construct that simulates the stromal structure with properties most similar to the native cornea. The topological structure (3 D fiber hydrogel, 3 D GelMA hydrogel, and 2 D culture dish) and chemical factors (serum, ascorbic acid, insulin, and β-FGF) are examined to study their effects on the differentiation of limbal stromal stem cells to keratocytes or fibroblasts and the phenotype maintenance, in vitro and in vivo tissue regeneration. The results demonstrate that fiber hydrogel and serum-free media synergize to provide an optimal environment for the maintenance of keratocyte phenotype and the regeneration of damaged corneal stroma.

References

  1. Kong, B. et al. Tissue-engineered cornea constructed with compressed collagen and laser-perforated electrospun mat. Sci. Rep. 7, 970–983 (2017). [PMID: 28428541]
  2. Whitcher, J. P., Srinivasan, M. & Upadhyay, M. P. Corneal blindness: a global perspective. Bull. WHO 79, 214–221 (2001). [PMID: 11285665]
  3. Borderie, V. M. et al. Predicted long-term outcome of corneal transplantation. Ophthalmology 116, 2354–2360 (2009). [PMID: 19815285]
  4. Wu, Z. J., Kong, B., Liu, R., Sun, W. & Mi, S. L. Engineering of corneal tissue through an aligned pva/collagen composite nanofibrous electrospun scaffold. Nanomaterials 8, 124–140 (2018). [>PMCID: ]
  5. Vrana, N. E. et al. Development of a reconstructed cornea from collagen-chondroitin sulfate foams and human cell cultures. Invest. Ophthalmol. Visual Sci. 49, 5325–5331 (2008). [DOI: 10.1167/iovs.07-1599]
  6. Luo, L. J., Lai, J. Y., Chou, S. F., Hsueh, Y. J. & Ma, D. H. Development of gelatin/ascorbic acid cryogels for potential use in corneal stromal tissue engineering. Acta Biomater. 65, 123–136 (2017). [PMID: 29128534]
  7. Ozcelik, B. et al. Ultrathin chitosan-poly(ethylene glycol) hydrogel films for corneal tissue engineering. Acta Biomater. 9, 6594–6605 (2013). [PMID: 23376126]
  8. Lawrence, B. D., Marchant, J. K., Pindrus, M., Omenetto, F. & Kaplan, D. L. Silk film biomaterials for cornea tissue engineering. Biomaterials 30, 1299–1308 (2009). [PMID: 19059642]
  9. Garagorri, N. et al. Keratocyte behavior in three-dimensional photopolymerizable poly(ethylene glycol) hydrogels. Acta Biomater. 4, 1139–1147 (2008). [PMID: 18567550]
  10. Then, K. Y. et al. Effect of microtopographical cues on human keratocyte orientation and gene expression. Curr. Eye Res. 36, 88–93 (2011). [PMID: 21281064]
  11. Pratoomsoot, C. et al. A thermoreversible hydrogel as a biosynthetic bandage for corneal wound repair. Biomaterials 29, 272–281 (2008). [PMID: 17976717]
  12. Wang, L. et al. A double network strategy to improve epithelization of a poly(2-hydroxyethyl methacrylate) hydrogel for corneal repair application. RSC Adv. 6, 1194–1202 (2016). [DOI: 10.1039/C5RA17726J]
  13. Rafat, M. et al. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials 29, 3960–3972 (2008). [PMID: 18639928]
  14. Wang, S. R. et al. In vitro 3D corneal tissue model with epithelium, stroma, and innervation. Biomaterials 112, 1–9 (2017). [PMID: 27741498]
  15. Rizwan, M. et al. Sequentially-crosslinked bioactive hydrogels as nano-patterned substrates with customizable stiffness and degradation for corneal tissue engineering applications. Biomaterials 120, 139–154 (2016). [PMID: 28061402]
  16. Wu, Z. J. et al. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Sci. Rep. 6, 24474 (2016). [PMID: 27091175]
  17. Wilson, S. L. et al. Chemical and topographical effects on cell differentiation and matrix elasticity in a corneal stromal layer model. Adv. Funct. Mater. 22, 3641–3649 (2012). [DOI: 10.1002/adfm.201200655]
  18. Wu, J., Du, Y. Q., Watkins, S. C., Funderburgh, J. L. & Wagner, W. R. The engineering of organized human corneal tissue through the spatial guidance of corneal stromal stem cells. Biomaterials 33, 1343–1352 (2012). [PMID: 22078813]
  19. Chaurasia, S. S. et al. Nanomedicine approaches for corneal diseases. J. Funct. Biomater. 6, 277–298 (2015). [PMID: 25941990]
  20. Brown, T. D. et al. Direct writing by way of melt electrospinning. Adv. Mater. 23, 5651–5657 (2011). [PMID: 22095922]
  21. Brown, T. D. et al. Melt electrospinning today: an opportune time for an emerging polymer process. Prog. Polym. Sci. 56, 116–166 (2015). [DOI: 10.1016/j.progpolymsci.2016.01.001]
  22. Niu, C. J. et al. General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat. Commun. 6, 7402–7410 (2015). [PMID: 26067281]
  23. Moreira, R. et al. Tissue-engineered fibrin-based heart valve with bio-inspired textile reinforcement. Adv. Healthcare Mater. 5, 2113–2121 (2016). [DOI: 10.1002/adhm.201600300]
  24. Kang, H. W. et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34, 312–319 (2016). [PMID: 26878319]
  25. Rafat, M. et al. Composite core-and-skirt collagen hydrogels with differential degradation for corneal therapeutic applications. Biomaterials 83, 142–155 (2016). [PMID: 26773670]
  26. Alaminos, M. et al. Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold. Invest. Ophthalmol. Vis. Sci. 47, 3311–3317 (2006). [PMID: 16877396]
  27. Chen, Y. C. et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels. Adv. Funct. Mater. 22, 2027–2039 (2012). [PMID: 22907987]
  28. Jeon, O. et al. In‐situ formation of growth‐factor‐loaded coacervate microparticle‐embedded hydrogels for directing encapsulated stem cell fate. Adv. Mater. 27, 2216–2223 (2015). [PMID: 25708428]
  29. Colosi, C. et al. Microfluidic bioprinting of heterogeneous 3D tissue constructs using low‐viscosity bioink. Adv. Mater. 28, 677–684 (2016). [PMID: 26606883]
  30. Bas, O. et al. The quest for mechanically and biologically functional soft biomaterials via soft network composites. Adv. Drug Delivery Rev. 132, 214–234 (2018). [DOI: 10.1016/j.addr.2018.07.015]
  31. Williams, A. et al. Toward morphologically relevant extracellular matrix in vitro models: 3D fiber reinforced hydrogels. Front. Physiol. 9, 966 (2018). [PMID: 30087619]
  32. Liao, I. C. et al. Composite three-dimensional woven scaffolds with interpenetrating network hydrogels to create functional synthetic articular cartilage. Adv. Funct. Mater. 23, 5833–5839 (2013). [PMID: 24578679]
  33. Kundu, J. et al. An additive manufacturing‐based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J. Tissue Eng. Regener. Med. 9, 1286–1297 (2015). [DOI: 10.1002/term.1682]
  34. Visser, J. et al. Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun. 6, 6933 (2015). [PMID: 25917746]
  35. Bas, O. et al. Biofabricated soft network composites for cartilage tissue engineering. Biofabrication 9, 025014 (2017). [PMID: 28374682]
  36. Bas, O. et al. Rational design and fabrication of multiphasic soft network composites for tissue engineering articular cartilage: a numerical model-based approach. Chem. Eng. J. 340, 15–23 (2018). [DOI: 10.1016/j.cej.2018.01.020]
  37. Eslami, M. et al. Fiber-reinforced hydrogel scaffolds for heart valve tissue engineering. J. Biomater. Appl. 29, 339–410 (2014). [DOI: 10.1177/0885328214530589]
  38. Wu, S. et al. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering. Acta Biomater. 51, 89–100 (2017). [PMID: 28110071]
  39. Patel, D. et al. Effects of cell adhesion motif, fiber stiffness, and cyclic strain on tenocyte gene expression in a tendon mimetic fiber composite hydrogel. Biochem. Biophys. Res. Commun. 499, 642–647 (2018). [PMID: 29601813]
  40. Ding, Y. et al. Biomimetic soft fibrous hydrogels for contractile and pharmacologically responsive smooth muscle. Acta Biomater. 74, 121–130 (2018). [PMID: 29753912]
  41. Bas, O. et al. An integrated design, material, and fabrication platform for engineering biomechanically and biologically functional soft tissues. ACS Appl. Mater. Interfaces 9, 29430–29437 (2017). [PMID: 28816441]
  42. Boschetti, F., Triacca, V., Spinelli, L. & Pandolfi, A. Mechanical characterization of porcine corneas. J Biomech Eng. 134, 31003–31012 (2012). [DOI: 10.1115/1.4006089]
  43. Funderburgh, J. L., Mann, M. M. & Funderburgh, M. L. Keratocyte phenotype mediates proteoglycan structure—a role for fibroblasts in corneal fibrosis. J. Biol. Chem. 278, 45629–45637 (2003). [PMID: 12933807]
  44. Pei, Y., Reins, R. Y. & McDermott, A. M. Aldehyde dehydrogenase (ALDH) 3A1 expression by the human keratocyte and its repair phenotypes. Exp. Eye Res. 83, 1063–1073 (2006). [PMID: 16822507]
  45. Basu, S. et al. Human limbal biopsy-derived stromal stem cells prevent corneal scarring. Sci. Transl. Med. 6, 266–172 (2014). [DOI: 10.1126/scitranslmed.3009644]
  46. Musselmann, K., Alexandrou, B., Kane, B. & Hassell, J. R. Maintenance of the keratocyte phenotype during cell proliferation stimulated by insulin. J. Biol. Chem. 280, 32634–32639 (2005). [PMID: 16169858]
  47. Hindman, H. B., Swanton, J. N., Phipps, R. P., Sime, P. J. & Huxlin, K. R. Differences in the TGF-beta 1-Induced profibrotic response of anterior and posterior corneal keratocytes in vitro. Invest. Ophthalmol. Vis. Sci. 51, 1935–1942 (2010). [PMID: 19907023]
  48. Zimmermann, D. R., Trueb, B., Winterhalter, K. H., Witmer, R. & Fischer, R. W. Type-Vi collagen is a major component of the human cornea. Febs Lett. 197, 55–58 (1986). [PMID: 3512309]
  49. Guo, Q. Y. et al. Modulation of keratocyte phenotype by collagen fibril nanoarchitecture in membranes for corneal repair. Biomaterials 34, 9365–9372 (2013). [PMID: 24041426]
  50. Li, D. et al. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 16, 361–366 (2004). [DOI: 10.1002/adma.200306226]
  51. West-Mays, J. A. & Dwivedi, D. J. The keratocyte: corneal stromal cell with variable repair phenotypes. Int. J. Biochem. Cell Biol. 38, 1625–1631 (2006). [PMID: 16675284]
  52. Berryhill, B. L. et al. Partial restoration of the keratocyte phenotype to bovine keratocytes made fibroblastic by serum. Invest. Ophthalmol. Vis. Sci. 43, 3416–3421 (2002). [PMID: 12407151]
  53. Ruggiero, F., Burillon, C. & Garrone, R. Human corneal fibrillogenesis-Collagen V structural analysis and fibrillar assembly by stromal fibroblasts in culture. Invest. Ophthalmol. Visual Sci. 37, 1749–1760 (1996).
  54. Musselmann, K., Alexandrou, B., Kane, B. & Hassell J. R. Keratocyte growth in media containing defined growth factors. Invest. Ophthalmol. Visual Sci. 46, 3563 (2005).
  55. Guerriero, E. et al. Loss of alpha3(IV) collagen expression associated with corneal keratocyte activation. Invest. Ophthalmol. Visual Sci. 48, 627–635 (2007). [DOI: 10.1167/iovs.06-0635]
  56. Ouyang, L. L., Highley, C. B., Sun, W. & Burdick, J. A. A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Adv. Mater. 29, 1604983–1604989 (2017). [DOI: 10.1002/adma.201604983]
  57. Loessner, D. et al. Functionalization, preparation and use of cell-laden gelatin methacryloyl-based hydrogels as modular tissue culture platforms. Nat. Protoc. 11, 727–746 (2016). [PMID: 26985572]

MeSH Term

Animals
Corneal Stroma
Cytoskeleton
Gelatin
Hydrogels
Limbus Corneae
Male
Methacrylates
Polyesters
Polyethylene Glycols
Rats, Sprague-Dawley
Regeneration
Stem Cells
Stress, Mechanical
Stromal Cells
Swine
Tissue Scaffolds
Vimentin

Chemicals

Hydrogels
Methacrylates
Polyesters
Vimentin
polycaprolactone
Polyethylene Glycols
Gelatin

Word Cloud

Created with Highcharts 10.0.0hydrogelDfibercornealstromastructureGelMA3regenerationstudyfabricateconstructoptimalstromalphenotypemaintenanceRegenerationalwayschallengeduesophisticatedkeratocyte-fibroblasttransformationgridpolyε-caprolactone-polyethyleneglycolmicrofibrousscaffoldinfusescaffold withgelatinmethacrylateobtainspacingadjustedsimulatespropertiessimilarnativecorneatopological2culturedishchemicalfactorsserumascorbicacidinsulinβ-FGFexaminedeffectsdifferentiationlimbalstemcellskeratocytesfibroblastsvitrovivotissueresultsdemonstrateserum-freemediasynergizeprovideenvironmentkeratocytedamagedFiberreinforcedinduce

Similar Articles

Cited By