Bayesian Inference of Ancestral Host-Parasite Interactions under a Phylogenetic Model of Host Repertoire Evolution.

Mariana P Braga, Michael J Landis, Sören Nylin, Niklas Janz, Fredrik Ronquist
Author Information
  1. Mariana P Braga: Department of Zoology, Stockholm University, Stockholm, SE-10691, Sweden.
  2. Michael J Landis: Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
  3. Sören Nylin: Department of Zoology, Stockholm University, Stockholm, SE-10691, Sweden.
  4. Niklas Janz: Department of Zoology, Stockholm University, Stockholm, SE-10691, Sweden.
  5. Fredrik Ronquist: Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.

Abstract

Intimate ecological interactions, such as those between parasites and their hosts, may persist over long time spans, coupling the evolutionary histories of the lineages involved. Most methods that reconstruct the coevolutionary history of such interactions make the simplifying assumption that parasites have a single host. Many methods also focus on congruence between host and parasite phylogenies, using cospeciation as the null model. However, there is an increasing body of evidence suggesting that the host ranges of parasites are more complex: that host ranges often include more than one host and evolve via gains and losses of hosts rather than through cospeciation alone. Here, we develop a Bayesian approach for inferring coevolutionary history based on a model accommodating these complexities. Specifically, a parasite is assumed to have a host repertoire, which includes both potential hosts and one or more actual hosts. Over time, potential hosts can be added or lost, and potential hosts can develop into actual hosts or vice versa. Thus, host colonization is modeled as a two-step process that may potentially be influenced by host relatedness. We first explore the statistical behavior of our model by simulating evolution of host-parasite interactions under a range of parameter values. We then use our approach, implemented in the program RevBayes, to infer the coevolutionary history between 34 Nymphalini butterfly species and 25 angiosperm families. Our analysis suggests that host relatedness among angiosperm families influences how easily Nymphalini lineages gain new hosts. [Ancestral hosts; coevolution; herbivorous insects; probabilistic modeling.].

References

  1. Br J Math Stat Psychol. 2019 May;72(2):316-333 [PMID: 30451277]
  2. Parasitology. 2010 Apr;137(4):733-41 [PMID: 19849890]
  3. Syst Biol. 2020 Jul 1;69(4):739-755 [PMID: 31860094]
  4. Science. 1998 Jan 16;279(5349):393-6 [PMID: 9430591]
  5. New Phytol. 2013 Apr;198(2):347-385 [PMID: 23437795]
  6. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9840-5 [PMID: 27535932]
  7. Evolution. 2002 Aug;56(8):1701-6 [PMID: 12353763]
  8. Evolution. 1997 Apr;51(2):410-419 [PMID: 28565354]
  9. Evolution. 2005 Nov;59(11):2299-311 [PMID: 16396171]
  10. Evolution. 2016 May;70(5):1150-5 [PMID: 27094253]
  11. Syst Biol. 2016 Jul;65(4):726-36 [PMID: 27235697]
  12. Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):442-7 [PMID: 25548168]
  13. Nat Commun. 2018 Dec 4;9(1):5155 [PMID: 30514925]
  14. Science. 2000 Jan 28;287(5453):607-14 [PMID: 10649986]
  15. Annu Rev Microbiol. 2009;63:291-310 [PMID: 19575560]
  16. J Parasitol. 1992 Aug;78(4):573-87 [PMID: 1635016]
  17. Mol Biol Evol. 2003 Oct;20(10):1692-704 [PMID: 12885968]
  18. Ecol Lett. 2019 Feb;22(2):354-364 [PMID: 30569559]
  19. Syst Biol. 2013 Nov;62(6):789-804 [PMID: 23736102]
  20. G3 (Bethesda). 2014 Nov 04;4(12):2545-52 [PMID: 25378476]
  21. Proc Biol Sci. 2014 Nov 22;281(1795): [PMID: 25274368]
  22. Syst Biol. 2002 Oct;51(5):729-39 [PMID: 12396587]
  23. New Phytol. 2015 Jul;207(2):437-453 [PMID: 25615647]
  24. Philos Trans R Soc Lond B Biol Sci. 2015 Apr 5;370(1665): [PMID: 25688014]
  25. Syst Biol. 2002 Apr;51(2):217-34 [PMID: 12028729]
  26. Nat Commun. 2021 Sep 29;12(1):5717 [PMID: 34588433]
  27. Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026113 [PMID: 14995526]
  28. Evolution. 2001 Apr;55(4):783-96 [PMID: 11392396]
  29. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 2):066102 [PMID: 18233893]
  30. Evolution. 2017 Aug;71(8):2100-2109 [PMID: 28654210]
  31. Mol Biol Evol. 2001 Jun;18(6):1001-13 [PMID: 11371589]
  32. Trends Ecol Evol. 2018 Jan;33(1):4-14 [PMID: 29113696]
  33. Evolution. 2014 Jan;68(1):105-24 [PMID: 24372598]
  34. Syst Biol. 2008 Feb;57(1):4-14 [PMID: 18253896]

MeSH Term

Animals
Bayes Theorem
Biological Coevolution
Butterflies
Host Specificity
Host-Parasite Interactions
Magnoliopsida
Models, Biological
Phylogeny

Word Cloud

Created with Highcharts 10.0.0hostshostinteractionsparasitescoevolutionaryhistorymodelpotentialmaytimelineagesmethodsparasitecospeciationrangesonedevelopBayesianapproachactualcanrelatednessNymphaliniangiospermfamiliesIntimateecologicalpersistlongspanscouplingevolutionaryhistoriesinvolvedreconstructmakesimplifyingassumptionsingleManyalsofocuscongruencephylogeniesusingnullHoweverincreasingbodyevidencesuggestingcomplex:oftenincludeevolveviagainslossesratheraloneinferringbasedaccommodatingcomplexitiesSpecificallyassumedrepertoireincludesaddedlostviceversaThuscolonizationmodeledtwo-stepprocesspotentiallyinfluencedfirstexplorestatisticalbehaviorsimulatingevolutionhost-parasiterangeparametervaluesuseimplementedprogramRevBayesinfer34butterflyspecies25analysissuggestsamonginfluenceseasilygainnew[Ancestralcoevolutionherbivorousinsectsprobabilisticmodeling]InferenceAncestralHost-ParasiteInteractionsPhylogeneticModelHostRepertoireEvolution

Similar Articles

Cited By