Selection of reference genes for normalization of RT-qPCR data in gene expression studies in Anthonomus eugenii Cano (Coleoptera: Curculionidae).

Daniele H Pinheiro, Blair D Siegfried
Author Information
  1. Daniele H Pinheiro: University of Florida, Entomology and Nematology Department, Charles Steinmetz Hall, P. O. Box 110620, Gainesville, FL, 32611-0620, United States. ORCID
  2. Blair D Siegfried: University of Florida, Entomology and Nematology Department, Charles Steinmetz Hall, P. O. Box 110620, Gainesville, FL, 32611-0620, United States. bsiegfried1@ufl.edu.

Abstract

The pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), is the main insect pest of peppers (Capsicum spp.) throughout the southern U.S. and a potential target for novel control methods that may require gene expression analyses. Careful selection of adequate reference genes to normalize RT-qPCR data is an important prerequisite for gene expression studies since the expression stability of reference genes can be affected by the experimental conditions leading to biased or erroneous results. The lack of studies on validation of reference genes for RT-qPCR analysis in A. eugenii limits the investigation of gene expression, therefore it is needed a systematic selection of suitable reference genes for data normalization. In the present study, three programs (BestKeeper, geNorm and NormFinder) were used to analyze the expression stability of candidate reference genes (β-ACT, ArgK, EF1-α, GAPDH, RPL12, RPS23, α-TUB, 18S and 28S) in A. eugenii under different experimental conditions. Our results revealed that the most stably expressed reference genes in A. eugenii varied according to the experimental condition evaluated: developmental stages (EF1-α, 18S and RPL12), sex (RPS23 and RPL12), low temperature (GAPDH and α-TUB), high temperature (α-TUB and RPS23), all temperatures (α-TUB and GAPDH), starvation (RPL12 and α-TUB), and dsRNA exposure (α-TUB and RPL12). Our study provides for the first time valuable information on appropriate reference genes that can be used in the analysis of gene expression by RT-qPCR in biological experiments involving A. eugenii.

References

  1. Pest Manag Sci. 2020 Mar;76(3):936-943 [PMID: 31461216]
  2. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71-4 [PMID: 17485472]
  3. Sci Rep. 2017 Oct 19;7(1):13520 [PMID: 29051594]
  4. PLoS One. 2015 Nov 10;10(11):e0141853 [PMID: 26555275]
  5. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  6. Biotechniques. 2005 Jul;39(1):75-85 [PMID: 16060372]
  7. Sci Rep. 2019 Feb 7;9(1):1632 [PMID: 30733563]
  8. Sci Rep. 2018 Jul 16;8(1):10743 [PMID: 30013149]
  9. Cancer Res. 2004 Aug 1;64(15):5245-50 [PMID: 15289330]
  10. Clin Chem. 2009 Apr;55(4):611-22 [PMID: 19246619]
  11. Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
  12. PLoS One. 2017 Mar 21;12(3):e0173821 [PMID: 28323834]
  13. PLoS One. 2015 Aug 05;10(8):e0135207 [PMID: 26244556]
  14. Int J Mol Sci. 2018 Dec 06;19(12): [PMID: 30563248]
  15. PLoS One. 2018 Apr 4;13(4):e0195096 [PMID: 29617430]
  16. Front Genet. 2014 Dec 22;5:445 [PMID: 25566327]
  17. PLoS One. 2013 Jul 09;8(7):e68059 [PMID: 23874494]
  18. PLoS One. 2014 Nov 25;9(11):e110454 [PMID: 25423476]
  19. Front Plant Sci. 2016 Jan 06;6:1192 [PMID: 26779226]
  20. Sci Rep. 2019 Jul 24;9(1):10703 [PMID: 31341190]
  21. Sci Rep. 2016 Dec 06;6:38513 [PMID: 27922100]
  22. Gene. 2019;721S:100003 [PMID: 34531001]
  23. Insects. 2016 Mar 04;7(1): [PMID: 26959066]
  24. Sci Rep. 2016 Oct 05;6:34698 [PMID: 27703270]
  25. Sci Rep. 2018 Feb 9;8(1):2689 [PMID: 29426915]
  26. Sci Rep. 2015 Dec 10;5:18201 [PMID: 26656102]
  27. Int J Biol Sci. 2013 Aug 20;9(8):792-802 [PMID: 23983612]
  28. Sci Rep. 2016 Dec 12;6:38836 [PMID: 27941836]
  29. Sci Rep. 2017 Aug 1;7(1):7047 [PMID: 28765619]
  30. PLoS One. 2015 Apr 27;10(4):e0125868 [PMID: 25915640]
  31. J Exp Bot. 2009;60(2):487-93 [PMID: 19264760]
  32. Front Plant Sci. 2017 May 19;8:729 [PMID: 28579993]
  33. J Appl Genet. 2013 Nov;54(4):391-406 [PMID: 24078518]
  34. J Econ Entomol. 2019 Feb 12;112(1):355-363 [PMID: 30289505]
  35. PLoS One. 2018 Nov 27;13(11):e0208027 [PMID: 30481225]
  36. BMC Mol Biol. 2019 Apr 29;20(1):13 [PMID: 31035927]
  37. Genes Immun. 2005 Jun;6(4):279-84 [PMID: 15815687]
  38. Biotechnol Lett. 2004 Mar;26(6):509-15 [PMID: 15127793]
  39. Biomed Res Int. 2018 Jul 31;2018:1828253 [PMID: 30151374]
  40. BMC Evol Biol. 2010 Apr 27;10:113 [PMID: 20423510]
  41. Sci Rep. 2018 Feb 1;8(1):2061 [PMID: 29391456]
  42. PLoS One. 2019 Aug 16;14(8):e0221420 [PMID: 31419256]
  43. PLoS One. 2015 Aug 28;10(8):e0136820 [PMID: 26317870]
  44. Sci Rep. 2017 Sep 7;7(1):10877 [PMID: 28883440]
  45. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  46. Front Physiol. 2018 Nov 14;9:1614 [PMID: 30483159]
  47. PLoS One. 2018 Oct 8;13(10):e0205182 [PMID: 30296272]
  48. Sci Rep. 2017 Apr 03;7:45634 [PMID: 28368031]

MeSH Term

Animals
Capsicum
Coleoptera
Databases, Genetic
Gene Expression
Gene Expression Profiling
Genes, Insect
Genetic Association Studies
Reverse Transcriptase Polymerase Chain Reaction
Starvation
Temperature

Word Cloud

Created with Highcharts 10.0.0referencegenesexpressioneugeniiα-TUBgeneRPL12RT-qPCRdatastudiesexperimentalGAPDHRPS23AnthonomusCanoColeoptera:CurculionidaeselectionstabilitycanconditionsresultsanalysisnormalizationstudyusedEF1-α18StemperaturepepperweevilmaininsectpestpeppersCapsicumsppthroughoutsouthernUSpotentialtargetnovelcontrolmethodsmayrequireanalysesCarefuladequatenormalizeimportantprerequisitesinceaffectedleadingbiasederroneouslackvalidationlimitsinvestigationthereforeneededsystematicsuitablepresentthreeprogramsBestKeepergeNormNormFinderanalyzecandidateβ-ACTArgK28Sdifferentrevealedstablyexpressedvariedaccordingconditionevaluated:developmentalstagessexlowhightemperaturesstarvationdsRNAexposureprovidesfirsttimevaluableinformationappropriatebiologicalexperimentsinvolvingSelection

Similar Articles

Cited By