Extreme Drug Tolerance of "Persisters".

Yee-Kuen Yam, Nadine Alvarez, Mei-Lin Go, Thomas Dick
Author Information
  1. Yee-Kuen Yam: Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States.
  2. Nadine Alvarez: Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States.
  3. Mei-Lin Go: Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, Singapore.
  4. Thomas Dick: Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, United States.

Abstract

Persistence of infection despite extensive chemotherapy with antibiotics displaying low MICs is a hallmark of lung disease caused by (Mab). Thus, the classical MIC assay is a poor predictor of clinical outcome. Discovery of more efficacious antibiotics requires more predictive potency assays. As a mycobacterium, Mab is an obligate aerobe and a chemo-organo-heterotroph - it requires oxygen and organic carbon sources for growth. However, bacteria growing in patients can encounter micro-environmental conditions that are different from aerated nutrient-rich broth used to grow planktonic cultures for MIC assays. These conditions may include oxygen and nutrient limitation which should arrest growth. Furthermore, Mab was shown to grow as biofilms . Here, we show Mab Bamboo, a clinical isolate we use for Mab drug discovery, can survive oxygen deprivation and nutrient starvation for extended periods of time in non-replicating states and developed an model where the bacterium grows as biofilm. Using these culture models, we show that non-replicating or biofilm-growing bacteria display tolerance to clinically used anti-Mab antibiotics, consistent with the observed persistence of infection in patients. To demonstrate the utility of the developed "persister" assays for drug discovery, we determined the effect of novel agents targeting membrane functions against these physiological forms of the bacterium and find that these compounds show "anti-persister" activity. In conclusion, we developed "persister" assays to fill an assay gap in Mab drug discovery compound progression and to enable identification of novel lead compounds showing "anti-persister" activity.

Keywords

References

  1. Microbiol Spectr. 2017 Jan;5(1): [PMID: 28233509]
  2. Antimicrob Agents Chemother. 2008 Jun;52(6):2019-26 [PMID: 18378709]
  3. Antimicrob Agents Chemother. 2019 Jun 24;63(7): [PMID: 31010859]
  4. Drug Discov Today. 2018 Aug;23(8):1502-1519 [PMID: 29635026]
  5. FEMS Microbiol Lett. 2003 Oct 24;227(2):171-4 [PMID: 14592705]
  6. Am J Respir Crit Care Med. 2016 Mar 15;193(6):692-3 [PMID: 26731090]
  7. FEMS Microbiol Lett. 1998 Jun 15;163(2):159-64 [PMID: 9673018]
  8. Front Microbiol. 2018 Dec 03;9:2901 [PMID: 30559727]
  9. Future Microbiol. 2012 Apr;7(4):513-8 [PMID: 22439727]
  10. PLoS Pathog. 2014 Sep 18;10(9):e1004394 [PMID: 25233380]
  11. Infect Immun. 2005 Jan;73(1):546-51 [PMID: 15618194]
  12. Am J Respir Crit Care Med. 2019 Apr 15;199(8):947-951 [PMID: 30428263]
  13. Front Microbiol. 2018 Jul 18;9:1613 [PMID: 30072975]
  14. Microbiology. 2006 Jun;152(Pt 6):1581-1590 [PMID: 16735722]
  15. Nat Rev Microbiol. 2019 Jul;17(7):441-448 [PMID: 30980069]
  16. Clin Microbiol Rev. 2012 Jul;25(3):545-82 [PMID: 22763637]
  17. Front Microbiol. 2019 Aug 23;10:1977 [PMID: 31507579]
  18. Antimicrob Agents Chemother. 2013 Apr;57(4):1648-53 [PMID: 23335744]
  19. Am J Respir Crit Care Med. 2007 Feb 15;175(4):367-416 [PMID: 17277290]
  20. Semin Respir Crit Care Med. 2013 Feb;34(1):95-102 [PMID: 23460009]
  21. BMC Genomics. 2016 Aug 05;17:553 [PMID: 27495169]
  22. Antimicrob Agents Chemother. 2017 May 24;61(6): [PMID: 28396540]
  23. Front Microbiol. 2018 Oct 10;9:2417 [PMID: 30364170]
  24. Nat Med. 2014 Jan;20(1):75-9 [PMID: 24336248]
  25. Clin Chest Med. 2015 Mar;36(1):13-34 [PMID: 25676516]
  26. Microbiology. 2010 Jan;156(Pt 1):81-7 [PMID: 19797356]
  27. Front Microbiol. 2016 Jun 16;7:947 [PMID: 27379076]
  28. Antimicrob Agents Chemother. 2018 Feb 23;62(3): [PMID: 29311080]
  29. Antimicrob Agents Chemother. 2014 Jul;58(7):3828-36 [PMID: 24752273]
  30. Genome Announc. 2017 May 18;5(20): [PMID: 28522728]
  31. Tuberculosis (Edinb). 2012 Nov;92(6):453-88 [PMID: 22940006]
  32. J Bacteriol. 1999 Apr;181(7):2252-6 [PMID: 10094705]
  33. Front Microbiol. 2018 Dec 05;9:2988 [PMID: 30568642]
  34. Front Microbiol. 2018 Nov 01;9:2642 [PMID: 30443245]
  35. Am Rev Respir Dis. 1976 Oct;114(4):807-11 [PMID: 823851]
  36. Front Microbiol. 2018 Jul 10;9:1547 [PMID: 30042757]
  37. J Antimicrob Chemother. 2015 Mar;70(3):857-67 [PMID: 25587994]
  38. Front Microbiol. 2017 Aug 15;8:1539 [PMID: 28861054]
  39. Bioorg Med Chem Lett. 2013 Sep 1;23(17):4741-50 [PMID: 23910985]
  40. Eur Respir J. 2015 Dec;46(6):1823-6 [PMID: 26493807]
  41. Front Microbiol. 2018 Jul 19;9:1627 [PMID: 30072978]

Grants

  1. R01 AI132374/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0MabassaysoxygendrugantibioticsnutrientshowdiscoverystarvationdevelopedinfectionMICassayclinicalrequiresgrowthbacteriapatientscanconditionsusedgrownon-replicatingbacteriumbiofilmtolerance"persister"novelcompounds"anti-persister"activityPersistencedespiteextensivechemotherapydisplayinglowMICshallmarklungdiseasecausedThusclassicalpoorpredictoroutcomeDiscoveryefficaciouspredictivepotencymycobacteriumobligateaerobechemo-organo-heterotroph-organiccarbonsourcesHowevergrowingencountermicro-environmentaldifferentaeratednutrient-richbrothplanktonicculturesmayincludelimitationarrestFurthermoreshownbiofilmsBambooisolateusesurvivedeprivationextendedperiodstimestatesmodelgrowsUsingculturemodelsbiofilm-growingdisplayclinicallyanti-MabconsistentobservedpersistencedemonstrateutilitydeterminedeffectagentstargetingmembranefunctionsphysiologicalformsfindconclusionfillgapcompoundprogressionenableidentificationleadshowingExtremeDrugTolerance"Persisters"NTM

Similar Articles

Cited By