Construction and validation of an eight-gene signature with great prognostic value in bladder cancer.

Xin Yan, Xun Fu, Zi-Xin Guo, Xiao-Ping Liu, Tong-Zu Liu, Sheng Li
Author Information
  1. Xin Yan: Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
  2. Xun Fu: Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
  3. Zi-Xin Guo: Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
  4. Xiao-Ping Liu: Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
  5. Tong-Zu Liu: Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
  6. Sheng Li: Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.

Abstract

Bladder cancer (BC) is one of the most common malignancies in urinary system with a common malignancy in urinary system with a high mortality and recurrence rate, so we attempt to construct a gene signature to predict the prognosis of BCs. We initially established a co-expression network by performing WGCNA analysis and further identified magenta module as key module (P = 8e-05, R2 = 0.4). Subsequently, we screened 12 genes associated with survival from the key module, which were selected to construct an eight-gene signature by establishing a LASSO Cox model. Moreover, we reckoned the risk score (RS) of each sample, through which we could divide samples into two groups (the high-risk and low-risk groups) and verify the signature, in the training set and 3 validation sets (internal test set, GSE13507and E-MTAB-4321). This signature could distinguish between the high- and low- risk patients well (survival analysis: P = 0.015; AUC: 0.61 at 1 year, 0.61 at 3 years and 0.61 at 5 years). In the validation sets, this signature also showed good performance, which was consistent with the training test. Furthermore, we plotted a nomogram to predict the possibility of the overall survival (OS) and three calibration curves to predict the effectiveness of the nomogram, which suggested good value and clinical utility of the nomogram. In conclusion, we established an eight-gene signature, which was probably effective in the prediction of prognosis of patients with BC.

Keywords

References

  1. Clin Cancer Res. 2012 Mar 1;18(5):1323-33 [PMID: 22228636]
  2. Jpn J Clin Oncol. 2014 Aug;44(8):776 [PMID: 25080514]
  3. EMBO Mol Med. 2012 Aug;4(8):743-60 [PMID: 22593025]
  4. PLoS One. 2014 May 15;9(5):e97059 [PMID: 24830737]
  5. J Clin Pathol. 2012 Apr;65(4):367-71 [PMID: 22287690]
  6. Oncotarget. 2017 Dec 11;9(3):3081-3088 [PMID: 29423030]
  7. Dev Biol. 2019 Jul 15;451(2):167-179 [PMID: 30930047]
  8. Front Oncol. 2019 Jan 15;8:659 [PMID: 30697528]
  9. Nat Genet. 2002 Oct;32(2):316-20 [PMID: 12355089]
  10. Front Physiol. 2017 Nov 28;8:947 [PMID: 29234286]
  11. Hum Mol Genet. 2005 Aug 1;14(15):2155-65 [PMID: 15972725]
  12. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  13. Blood Adv. 2017 Sep 1;1(20):1682-1693 [PMID: 29296815]
  14. J Cell Physiol. 2019 Aug;234(10):19073-19087 [PMID: 30927274]
  15. J Cell Biochem. 2019 Feb 11;: [PMID: 30746803]
  16. Nucleic Acids Res. 2019 Feb 28;47(4):2041-2055 [PMID: 30541086]
  17. Cancer Sci. 2012 Mar;103(3):577-86 [PMID: 22129094]
  18. Nat Genet. 2014 Jun;46(6):607-12 [PMID: 24747642]
  19. Hereditas. 2019 Jan 28;156:7 [PMID: 30723390]
  20. Clin Cancer Res. 2008 Aug 1;14(15):4814-20 [PMID: 18676753]
  21. Lancet. 2016 Dec 3;388(10061):2796-2810 [PMID: 27345655]
  22. J Stat Softw. 2010;33(1):1-22 [PMID: 20808728]
  23. J Genet. 2017 Jun;96(2):383-387 [PMID: 28674240]
  24. Cancer Epidemiol. 2017 Jun;48:29-35 [PMID: 28363161]
  25. Sci Rep. 2015 Jul 16;5:12136 [PMID: 26179371]
  26. Cancer Biomark. 2019;24(2):183-193 [PMID: 30689556]
  27. Bioinformatics. 2004 Feb 12;20(3):307-15 [PMID: 14960456]
  28. RNA. 2015 Sep;21(9):1532-43 [PMID: 26160102]
  29. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  30. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  31. Stat Med. 2013 Dec 30;32(30):5381-97 [PMID: 24027076]
  32. Mol Med Rep. 2018 Dec;18(6):5579-5593 [PMID: 30365077]
  33. Med Decis Making. 2006 Nov-Dec;26(6):565-74 [PMID: 17099194]
  34. Urology. 2016 Nov;97:124-129 [PMID: 27491964]
  35. J Clin Oncol. 2010 Jun 1;28(16):2660-7 [PMID: 20421545]
  36. Hematol Oncol Clin North Am. 2015 Apr;29(2):205-18, vii [PMID: 25836929]
  37. Front Genet. 2019 Feb 04;10:37 [PMID: 30778371]
  38. BMC Bioinformatics. 2011 Mar 17;12:77 [PMID: 21414208]
  39. Biom J. 2010 Feb;52(1):70-84 [PMID: 19937997]
  40. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  41. Cancer Biol Ther. 2019;20(6):750-759 [PMID: 30900950]
  42. Mol Cancer. 2010 Jan 08;9:3 [PMID: 20059769]
  43. Cancer Sci. 2006 Oct;97(10):963-9 [PMID: 16984370]
  44. BMC Cancer. 2018 Mar 13;18(1):287 [PMID: 29534679]
  45. Oncol Rep. 2019 Jan;41(1):292-300 [PMID: 30365134]
  46. CA Cancer J Clin. 2018 Nov;68(6):394-424 [PMID: 30207593]
  47. BMC Med Genet. 2019 Mar 29;20(1):54 [PMID: 30925905]
  48. Mol Med Rep. 2014 Sep;10(3):1583-9 [PMID: 25059753]
  49. J Cell Physiol. 2018 Jan;234(1):619-631 [PMID: 30069972]

Word Cloud

Created with Highcharts 10.0.0signature0survivalnomogramcancerpredictprognosismodule=eight-genevalidation61BCcommonurinarysystemconstructgeneestablishedWGCNAkeyPLASSOriskgroupstrainingset3setstestpatientsyearsgoodoverallvaluebladderBladderonemalignanciesmalignancyhighmortalityrecurrencerateattemptBCsinitiallyco-expressionnetworkperforminganalysisidentifiedmagenta8e-05R24Subsequentlyscreened12genesassociatedselectedestablishingCoxmodelMoreoverreckonedscoreRSsampledividesamplestwohigh-risklow-riskverifyinternalGSE13507andE-MTAB-4321distinguishhigh-low-wellanalysis:015AUC:1year5alsoshowedperformanceconsistentFurthermoreplottedpossibilityOSthreecalibrationcurveseffectivenesssuggestedclinicalutilityconclusionprobablyeffectivepredictionConstructiongreatprognosticgrade

Similar Articles

Cited By