Antifungal Activity of Olive () Leaf Extracts Loaded in Chitosan Nanoparticles.

Innocenzo Muzzalupo, Giuliana Badolati, Adriana Chiappetta, Nevio Picci, Rita Muzzalupo
Author Information
  1. Innocenzo Muzzalupo: Dipartimento di Farmacia, Scienze della Salute e della Nutrizione - Universitá della Calabria (DFSSN-UNICAL), Ed. Polifunzionale, Arcavacata di Rende (CS), Rende, Italy.
  2. Giuliana Badolati: Dipartimento di Farmacia, Scienze della Salute e della Nutrizione - Universitá della Calabria (DFSSN-UNICAL), Ed. Polifunzionale, Arcavacata di Rende (CS), Rende, Italy.
  3. Adriana Chiappetta: Dipartimento di Biologia, Ecologia e Scienza della Terra, Università della Calabria, Arcavacata di Rende, Italy.
  4. Nevio Picci: Dipartimento di Farmacia, Scienze della Salute e della Nutrizione - Universitá della Calabria (DFSSN-UNICAL), Ed. Polifunzionale, Arcavacata di Rende (CS), Rende, Italy.
  5. Rita Muzzalupo: Dipartimento di Farmacia, Scienze della Salute e della Nutrizione - Universitá della Calabria (DFSSN-UNICAL), Ed. Polifunzionale, Arcavacata di Rende (CS), Rende, Italy.

Abstract

Olive leaf extract is characterized by a high content of phenols and flavonoids (oleuropein, luteolin, and their derivatives). These compounds are defined as secondary metabolites and exert such as anti-inflammatory, antioxidant, and antimicrobial activities. We investigated the antifungal activity of two Olive leaf extracts (named and ) against a (AACC0215) strain that causes diseases to many economically important plants and synthesizing diverse mycotoxins. In this work, we aimed to identify the most appropriate concentration between the tested two Olive leaf extracts to develop a safe, stable and efficient drug delivery system. Qualitative and quantitative analyses of the two Olive leaf extracts by (HPLC) were performed. Furthermore, we also evaluated the antifungal effects of the two leaf extracts when encapsulated in Chitosan-tripolyphosphate nanoparticles. The major compound in both and was oleuropein, with 336 and 603 mg/g, respectively, however, high concentrations of flavonoid were also present. and showed a concentration depended effect on (AACC0215) viability. Our results showed a great efficacy of /nanoparticles at the higher concentration tested (12X) against the target species. In this case, we observed an inhibition rate to both germination and growth of 87.96 and 58.13%, respectively. We suggest that Olive leaf extracts, as free or encapsulated in Chitosan-tripolyphosphate nanoparticles, could be used as fungicides to control plant diseases. Finally, future application of these findings may allow to reduce the dosage of fungicides potentially harmful to human health.

Keywords

References

  1. Biomacromolecules. 2003 Nov-Dec;4(6):1457-65 [PMID: 14606868]
  2. Molecules. 2015 Jul 17;20(7):12992-3004 [PMID: 26193251]
  3. Curr Drug Targets. 2014 May;15(5):478-85 [PMID: 24712518]
  4. PLoS One. 2015 Sep 18;10(9):e0138242 [PMID: 26381754]
  5. Int J Biol Macromol. 2015;77:36-51 [PMID: 25748851]
  6. Biomed Res Int. 2014;2014:613619 [PMID: 24987696]
  7. J Colloid Interface Sci. 2005 Mar 15;283(2):344-51 [PMID: 15721903]
  8. Int J Food Microbiol. 2004 Sep 1;95(2):147-55 [PMID: 15282127]
  9. J Control Release. 2004 Nov 5;100(1):5-28 [PMID: 15491807]
  10. Int J Nanomedicine. 2015 Jun 09;10:3897-909 [PMID: 26089666]
  11. J Agric Food Chem. 1999 Sep;47(9):3531-4 [PMID: 10552680]
  12. Fungal Biol. 2016 Sep;120(9):1094-104 [PMID: 27567716]
  13. Plant Foods Hum Nutr. 2011 Mar;66(1):1-10 [PMID: 21253861]
  14. Annu Rev Phytopathol. 2003;41:177-98 [PMID: 12651961]
  15. Pharm Res. 2009 Aug;26(8):1918-30 [PMID: 19507009]
  16. Rev Argent Microbiol. 2015 Jan-Mar;47(1):72-7 [PMID: 25705046]
  17. Appl Environ Microbiol. 2004 Jun;70(6):3512-20 [PMID: 15184151]
  18. Pharmaceutics. 2019 Dec 26;12(1): [PMID: 31888000]
  19. Mutat Res. 2011 Aug 16;723(2):165-70 [PMID: 21620995]
  20. Acta Pharm. 2016 Sep 1;66(3):411-21 [PMID: 27383889]
  21. Int J Antimicrob Agents. 2009 May;33(5):461-3 [PMID: 19135874]
  22. Int J Biol Macromol. 2013 Aug;59:46-58 [PMID: 23608103]
  23. Biomacromolecules. 2007 Jul;8(7):2051-8 [PMID: 17569559]
  24. J Sci Food Agric. 2013 May;93(7):1525-36 [PMID: 23512598]
  25. Mycoses. 2003 Apr;46(3-4):132-6 [PMID: 12870202]
  26. Int J Pharm. 2013 Oct 15;455(1-2):219-28 [PMID: 23886649]
  27. Nanoscale Res Lett. 2014 Jul 09;9(1):340 [PMID: 25114635]
  28. Sci Pharm. 2010;78(2):133-54 [PMID: 21179340]
  29. MethodsX. 2015 Jul 20;2:340-4 [PMID: 27077051]
  30. J Phys Chem B. 2009 Jul 9;113(27):9137-42 [PMID: 19530685]

Word Cloud

Created with Highcharts 10.0.0leafextractsolivetwooleuropeinantifungalconcentrationOlivehighactivityAACC0215diseasestestedalsoencapsulatedchitosan-tripolyphosphatenanoparticlesrespectivelyshowedfungicidesextractcharacterizedcontentphenolsflavonoidsluteolinderivativescompoundsdefinedsecondarymetabolitesexertanti-inflammatoryantioxidantantimicrobialactivitiesinvestigatednamedstraincausesmanyeconomicallyimportantplantssynthesizingdiversemycotoxinsworkaimedidentifyappropriatedevelopsafestableefficientdrugdeliverysystemQualitativequantitativeanalysesHPLCperformedFurthermoreevaluatedeffectsmajorcompound336603mg/ghoweverconcentrationsflavonoidpresentdependedeffectviabilityresultsgreatefficacy/nanoparticleshigher12Xtargetspeciescaseobservedinhibitionrategerminationgrowth87965813%suggestfreeusedcontrolplantFinallyfutureapplicationfindingsmayallowreducedosagepotentiallyharmfulhumanhealthAntifungalActivityLeafExtractsLoadedChitosanNanoparticlesbiofungicidesnanoformulates

Similar Articles

Cited By (19)