How Early Life Adversity Influences Defensive Circuitry.

Sahana Murthy, Elizabeth Gould
Author Information
  1. Sahana Murthy: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
  2. Elizabeth Gould: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA. Electronic address: goulde@Princeton.edu.

Abstract

Childhood maltreatment increases the likelihood of developing anxiety disorders in humans. Early life adversity (ELA) paradigms in rodents produce lasting increases in avoidant and inhibitory responses to both immediate and nonspecific threats, collectively referred to as defensive behaviors. This approach provides an opportunity to thoroughly investigate the underlying mechanisms, an effort that is currently under way. In this review, we consider the growing literature indicating that ELA alters the rhythmic firing of neurons in brain regions associated with defensive behavior, as well as potential neuronal, glial, and extracellular matrix contributions to functional changes in this circuitry. We also consider how ELA studies in rodents may inform us about both susceptible and resilient outcomes in humans.

Keywords

References

  1. Front Integr Neurosci. 2016 Jan 11;9:63 [PMID: 26793072]
  2. Biol Psychiatry. 2015 Feb 15;77(4):335-44 [PMID: 25127741]
  3. Eur J Neurosci. 2015 Jan;41(1):31-44 [PMID: 25306895]
  4. Neuropsychopharmacology. 2015 Mar 13;40(5):1203-15 [PMID: 25403725]
  5. Dev Growth Differ. 2018 Jun;60(5):278-290 [PMID: 29878325]
  6. Sci Rep. 2019 Mar 11;9(1):4120 [PMID: 30858462]
  7. Behav Brain Res. 2017 Jan 15;317:319-326 [PMID: 27693266]
  8. Psychiatr Danub. 2016 Sep;28(3):211-219 [PMID: 27658829]
  9. Mol Psychiatry. 2020 Jun;25(6):1159-1174 [PMID: 31439936]
  10. Hippocampus. 2012 Jan;22(1):106-16 [PMID: 20882540]
  11. Brain Struct Funct. 2018 Mar;223(2):883-895 [PMID: 29022091]
  12. J Neurosci. 2016 Nov 9;36(45):11459-11468 [PMID: 27911749]
  13. Neural Regen Res. 2017 Jul;12(7):1028-1035 [PMID: 28852377]
  14. Neuropsychopharmacology. 2015 Sep;40(10):2368-78 [PMID: 25833129]
  15. Science. 2018 Oct 12;362(6411):181-185 [PMID: 30309945]
  16. Transl Psychiatry. 2018 Dec 10;8(1):271 [PMID: 30531788]
  17. Front Syst Neurosci. 2017 Jun 14;11:37 [PMID: 28659768]
  18. Neuron. 2015 Jun 3;86(5):1277-89 [PMID: 26050044]
  19. Acta Neurobiol Exp (Wars). 2013;73(3):394-403 [PMID: 24129488]
  20. Brain Behav Immun. 2016 Jul;55:39-48 [PMID: 26431692]
  21. Cereb Cortex. 2017 May 1;27(5):2871-2884 [PMID: 27178192]
  22. Biol Psychiatry. 2014 Aug 15;76(4):306-14 [PMID: 24231200]
  23. Biol Psychiatry. 2015 Feb 15;77(4):314-23 [PMID: 24993057]
  24. Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22821-22832 [PMID: 31636210]
  25. Sci Rep. 2017 Feb 07;7:42042 [PMID: 28169319]
  26. Cell. 2018 May 31;173(6):1329-1342.e18 [PMID: 29731170]
  27. Biol Psychiatry. 2015 Feb 1;77(3):236-245 [PMID: 25433903]
  28. Brain Struct Funct. 2018 Nov;223(8):3711-3729 [PMID: 30032360]
  29. Biol Psychiatry. 2016 Jan 15;79(2):87-96 [PMID: 25687413]
  30. Dialogues Clin Neurosci. 2015 Sep;17(3):295-303 [PMID: 26487810]
  31. Soc Cogn Affect Neurosci. 2014 Dec;9(12):2026-33 [PMID: 24493840]
  32. Front Neurosci. 2014 Jun 17;8:166 [PMID: 24987328]
  33. Behav Brain Res. 2020 Feb 3;379:112306 [PMID: 31629835]
  34. J Neurosci. 2017 Feb 1;37(5):1269-1283 [PMID: 28039374]
  35. Neural Plast. 2016;2016:4928081 [PMID: 26881112]
  36. Nat Commun. 2017 Sep 25;8(1):684 [PMID: 28947770]
  37. Psychol Med. 2013 Mar;43(3):507-18 [PMID: 22781311]
  38. Front Endocrinol (Lausanne). 2014 Feb 20;5:13 [PMID: 24600436]
  39. Psychol Med. 2018 May;48(7):1157-1166 [PMID: 28942738]
  40. Glia. 2017 Dec;65(12):1944-1960 [PMID: 28885722]
  41. Neural Plast. 2018 Feb 4;2018:5735789 [PMID: 29531525]
  42. Eur Neuropsychopharmacol. 2018 Jul;28(7):807-817 [PMID: 29866576]
  43. J Neurosci. 2015 Aug 19;35(33):11656-66 [PMID: 26290242]
  44. Behav Brain Res. 2019 Nov 18;374:112112 [PMID: 31377252]
  45. FASEB J. 2019 Nov;33(11):11758-11775 [PMID: 31366238]
  46. Dev Psychopathol. 2018 Oct;30(4):1475-1485 [PMID: 29224580]
  47. Eur J Neurosci. 2012 Dec;36(11):3521-30 [PMID: 23039863]
  48. Eur J Neurosci. 2013 Jul;38(1):2089-107 [PMID: 23581639]
  49. Neuropharmacology. 2017 Nov;126:179-189 [PMID: 28890366]
  50. Proc Natl Acad Sci U S A. 2019 Feb 12;116(7):2733-2742 [PMID: 30683720]
  51. Soc Cogn Affect Neurosci. 2013 Apr;8(4):362-9 [PMID: 22258799]
  52. Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4637-4642 [PMID: 30782788]
  53. Transl Psychiatry. 2018 Feb 21;8(1):49 [PMID: 29463821]
  54. Front Behav Neurosci. 2019 Mar 01;13:40 [PMID: 30881296]
  55. Neurobiol Learn Mem. 2012 Oct;98(3):207-14 [PMID: 22922490]
  56. Dialogues Clin Neurosci. 2014 Sep;16(3):321-33 [PMID: 25364283]
  57. Neurobiol Learn Mem. 2016 Dec;136:74-85 [PMID: 27664716]
  58. Psychol Med. 2018 May;48(7):1092-1101 [PMID: 29429419]
  59. Neuropsychopharmacology. 2015 Mar;40(4):906-14 [PMID: 25284320]
  60. J Neuroendocrinol. 2013 Feb;25(2):158-67 [PMID: 22913644]
  61. Cold Spring Harb Perspect Biol. 2015 Sep 01;7(9):a021303 [PMID: 26330520]
  62. Dev Psychobiol. 2014 Dec;56(8):1735-46 [PMID: 25196846]
  63. Neuropharmacology. 2019 May 1;149:195-203 [PMID: 30641077]
  64. Hum Brain Mapp. 2017 Feb;38(2):855-868 [PMID: 27774721]
  65. Neuropsychopharmacology. 2016 Jan;41(1):3-23 [PMID: 26076834]
  66. Neuroscience. 2018 May 21;379:316-333 [PMID: 29608944]
  67. Psychol Med. 2018 Nov;48(15):2562-2572 [PMID: 29478418]
  68. Behav Brain Res. 2014 Oct 15;273:144-54 [PMID: 25084041]
  69. Cell Rep. 2018 Nov 27;25(9):2299-2307.e4 [PMID: 30485800]
  70. Brain Res. 2008 Feb 8;1193:25-33 [PMID: 18178177]
  71. Neurobiol Aging. 2014 Jul;35(7):1680-5 [PMID: 24559649]
  72. Neuroscience. 2010 Sep 15;169(4):1705-14 [PMID: 20600655]
  73. PLoS One. 2017 Oct 19;12(10):e0186700 [PMID: 29049348]
  74. Elife. 2016 Dec 24;5: [PMID: 28012274]
  75. J Child Psychol Psychiatry. 2016 Oct;57(10):1154-64 [PMID: 27647051]
  76. Int J Neuropsychopharmacol. 2010 May;13(4):515-25 [PMID: 19653930]
  77. Behav Brain Res. 2019 May 17;364:1-10 [PMID: 30738104]
  78. Psychopharmacology (Berl). 2017 May;234(9-10):1451-1465 [PMID: 28224183]
  79. Nat Commun. 2018 Jul 16;9(1):2744 [PMID: 30013065]
  80. Behav Brain Res. 2014 Aug 1;269:75-80 [PMID: 24746487]
  81. Hum Brain Mapp. 2013 Nov;34(11):2899-909 [PMID: 22696400]
  82. JAMA Netw Open. 2018 Nov 2;1(7):e184493 [PMID: 30646356]
  83. Neuroscience. 2016 Mar 1;316:221-31 [PMID: 26733385]
  84. Neuropsychopharmacology. 2013 Feb;38(3):386-94 [PMID: 22968818]
  85. Hum Brain Mapp. 2018 Mar;39(3):1283-1290 [PMID: 29250891]
  86. Elife. 2017 Jul 14;6: [PMID: 28708061]
  87. Neuropsychopharmacology. 2016 Apr;41(5):1376-85 [PMID: 26361057]
  88. Trends Cogn Sci. 2015 Mar;19(3):151-61 [PMID: 25715908]
  89. Front Neurosci. 2019 Mar 20;13:196 [PMID: 30949017]
  90. Psychol Med. 2013 Sep;43(9):1825-36 [PMID: 23254143]
  91. Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2532-2537 [PMID: 28223484]
  92. Biol Psychiatry. 2013 Dec 1;74(11):845-52 [PMID: 23954109]
  93. Neuron. 2019 Nov 6;104(3):601-610.e4 [PMID: 31521441]
  94. Nat Rev Neurol. 2019 Nov;15(11):657-669 [PMID: 31530940]
  95. Stress. 2019 Sep;22(5):563-570 [PMID: 31007117]
  96. Transl Psychiatry. 2016 Feb 02;6:e729 [PMID: 26836417]
  97. Behav Brain Res. 2019 Dec 30;376:112239 [PMID: 31526768]
  98. Int J Cancer. 2018 Sep 15;143(6):1279-1286 [PMID: 29468674]
  99. J Comp Neurol. 2018 Nov 1;526(16):2647-2664 [PMID: 30136731]
  100. Exp Neurol. 2016 Jan;275 Pt 2:274-84 [PMID: 26057948]
  101. Dev Psychopathol. 2015 May;27(2):477-91 [PMID: 25997766]
  102. Nat Commun. 2019 Nov 8;10(1):5098 [PMID: 31704941]
  103. Neuroscience. 2019 Dec 15;423:131-147 [PMID: 31705889]
  104. Behav Brain Res. 2016 Sep 1;310:119-25 [PMID: 27180166]
  105. Dev Psychobiol. 2016 Dec;58(8):1034-1042 [PMID: 27298086]
  106. Am J Psychiatry. 2016 Nov 1;173(11):1083-1093 [PMID: 27609244]
  107. Front Behav Neurosci. 2018 Jul 31;12:157 [PMID: 30108490]
  108. Biol Psychiatry. 2019 Jun 15;85(12):1011-1020 [PMID: 31027646]
  109. Front Psychiatry. 2019 Mar 11;10:118 [PMID: 30914979]
  110. J Neurosci. 2017 Jul 19;37(29):6869-6876 [PMID: 28626018]

Grants

  1. R01 MH117459/NIMH NIH HHS

MeSH Term

Adverse Childhood Experiences
Animals
Anxiety Disorders
Brain
Humans
Neurons
Resilience, Psychological

Word Cloud

Created with Highcharts 10.0.0ELAincreasesanxietyhumansEarlyrodentsdefensiveconsiderChildhoodmaltreatmentlikelihooddevelopingdisorderslifeadversityparadigmsproducelastingavoidantinhibitoryresponsesimmediatenonspecificthreatscollectivelyreferredbehaviorsapproachprovidesopportunitythoroughlyinvestigateunderlyingmechanismseffortcurrentlywayreviewgrowingliteratureindicatingaltersrhythmicfiringneuronsbrainregionsassociatedbehaviorwellpotentialneuronalglialextracellularmatrixcontributionsfunctionalchangescircuitryalsostudiesmayinformussusceptibleresilientoutcomesLifeAdversityInfluencesDefensiveCircuitryamygdalafearhippocampuspostnatalstressprefrontalcortex

Similar Articles

Cited By