Flagellum-Mediated Mechanosensing and RflP Control Motility State of Pathogenic Escherichia coli.

Leanid Laganenka, María Esteban López, Remy Colin, Victor Sourjik
Author Information
  1. Leanid Laganenka: Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
  2. María Esteban López: Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
  3. Remy Colin: Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
  4. Victor Sourjik: Max Planck Institute for Terrestrial Microbiology, Marburg, Germany victor.sourjik@synmikro.mpi-marburg.mpg.de. ORCID

Abstract

Bacterial flagellar motility plays an important role in many processes that occur at surfaces or in hydrogels, including adhesion, biofilm formation, and bacterium-host interactions. Consequently, expression of flagellar genes, as well as genes involved in biofilm formation and virulence, can be regulated by the surface contact. In a few bacterial species, flagella themselves are known to serve as mechanosensors, where an increased load on flagella experienced during surface contact or swimming in viscous media controls gene expression. In this study, we show that gene regulation by motility-dependent mechanosensing is common among pathogenic strains. This regulatory mechanism requires flagellar rotation, and it enables pathogenic to repress flagellar genes at low loads in liquid culture, while activating motility in porous medium (soft agar) or upon surface contact. It also controls several other cellular functions, including metabolism and signaling. The mechanosensing response in pathogenic depends on the negative regulator of motility, RflP (YdiV), which inhibits basal expression of flagellar genes in liquid. While no conditional inhibition of flagellar gene expression in liquid and therefore no upregulation in porous medium was observed in the wild-type commensal or laboratory strains of , mechanosensitive regulation could be recovered by overexpression of RflP in the laboratory strain. We hypothesize that this conditional activation of flagellar genes in pathogenic reflects adaptation to the dual role played by flagella and motility during infection. Flagella and motility are widespread virulence factors among pathogenic bacteria. Motility enhances the initial host colonization, but the flagellum is a major antigen targeted by the host immune system. Here, we demonstrate that pathogenic strains employ a mechanosensory function of the flagellar motor to activate flagellar expression under high loads, while repressing it in liquid culture. We hypothesize that this mechanism allows pathogenic to regulate its motility dependent on the stage of infection, activating flagellar expression upon initial contact with the host epithelium, when motility is beneficial, but reducing it within the host to delay the immune response.

Keywords

References

  1. Infect Immun. 2001 May;69(5):3021-30 [PMID: 11292720]
  2. J Cell Sci. 2019 Apr 3;132(7): [PMID: 30944157]
  3. Cell. 1988 Jul 29;54(3):345-51 [PMID: 3396074]
  4. Mol Microbiol. 2013 Oct;90(1):6-21 [PMID: 23888912]
  5. Science. 2017 Oct 27;358(6362):531-534 [PMID: 29074777]
  6. Mol Microbiol. 2002 Feb;43(3):809-21 [PMID: 11929534]
  7. J Bacteriol. 2003 Jun;185(12):3567-74 [PMID: 12775694]
  8. Mol Microbiol. 2014 Dec;94(6):1272-84 [PMID: 25315056]
  9. J Bacteriol. 2007 May;189(9):3613-23 [PMID: 17322315]
  10. FEMS Microbiol Rev. 2003 Oct;27(4):505-23 [PMID: 14550943]
  11. J Bacteriol. 2011 Apr;193(7):1600-11 [PMID: 21278297]
  12. PLoS Pathog. 2009 Aug;5(8):e1000553 [PMID: 19696934]
  13. Environ Microbiol Rep. 2018 Feb;10(1):23-32 [PMID: 29124898]
  14. Proc Natl Acad Sci U S A. 2011 Dec 20;108(51):20742-7 [PMID: 22143773]
  15. Mol Microbiol. 2017 Nov;106(3):367-380 [PMID: 28800172]
  16. mBio. 2018 May 1;9(3): [PMID: 29717015]
  17. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  18. mBio. 2014 Aug 26;5(5):e01611-14 [PMID: 25161191]
  19. Infect Immun. 2010 Mar;78(3):914-26 [PMID: 20028809]
  20. Gene. 1995 May 26;158(1):9-14 [PMID: 7789817]
  21. Science. 2012 Feb 17;335(6070):859-64 [PMID: 22344444]
  22. Nat Rev Microbiol. 2008 Jun;6(6):455-65 [PMID: 18483484]
  23. J Bacteriol. 2009 Jun;191(12):3928-37 [PMID: 19376870]
  24. J Bacteriol. 2000 Jan;182(1):207-10 [PMID: 10613882]
  25. J Bacteriol. 2015 Jul 06;198(1):7-11 [PMID: 26148715]
  26. Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5503-8 [PMID: 25870295]
  27. iScience. 2019 Jun 28;16:145-154 [PMID: 31170626]
  28. Genes Dev. 2005 Dec 15;19(24):3083-94 [PMID: 16357223]
  29. Infect Immun. 1985 Dec;50(3):941-3 [PMID: 4066041]
  30. Annu Rev Microbiol. 2011;65:389-410 [PMID: 21939377]
  31. Proc Natl Acad Sci U S A. 2013 Jul 16;110(29):11839-44 [PMID: 23818629]
  32. Microbiology. 2012 Jun;158(Pt 6):1533-1542 [PMID: 22461489]
  33. Infect Immun. 2000 Aug;68(8):4598-603 [PMID: 10899861]
  34. Mol Microbiol. 2012 Jan;83(1):41-51 [PMID: 22053824]
  35. Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):250-5 [PMID: 25538299]
  36. Cell Host Microbe. 2019 Jan 9;25(1):140-152.e6 [PMID: 30581112]
  37. FEMS Microbiol Rev. 2013 Nov;37(6):849-71 [PMID: 23480406]
  38. Nat Commun. 2016 Sep 30;7:12984 [PMID: 27687245]
  39. Int J Med Microbiol. 2002 Mar;291(8):605-14 [PMID: 12008914]
  40. mBio. 2013 Aug 20;4(4): [PMID: 23963182]
  41. Gene. 1988 Sep 30;69(2):301-15 [PMID: 3069586]
  42. Trends Microbiol. 2014 Sep;22(9):517-27 [PMID: 24894628]
  43. Proc Natl Acad Sci U S A. 2017 Dec 12;114(50):E10792-E10798 [PMID: 29183977]
  44. Annu Rev Genet. 1992;26:131-58 [PMID: 1482109]
  45. J Bacteriol. 2008 Jul;190(13):4470-7 [PMID: 18441064]
  46. Nat Methods. 2006 Aug;3(8):623-8 [PMID: 16862137]

MeSH Term

Bacterial Proteins
Culture Media
Escherichia coli
Flagella
Gene Expression Regulation, Bacterial
Mechanotransduction, Cellular
Movement
Virulence

Chemicals

Bacterial Proteins
Culture Media