The function of bacterial HtrA is evolutionally conserved in mammalian HtrA2/Omi.

Hea-Jong Chung, Mohammad Abu Hena Mostofa Jamal, Seong-Tshool Hong
Author Information
  1. Hea-Jong Chung: Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, 54907, South Korea.
  2. Mohammad Abu Hena Mostofa Jamal: Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, 54907, South Korea.
  3. Seong-Tshool Hong: Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, 54907, South Korea. seonghong@chonbuk.ac.kr.

Abstract

Although the malfunction of HtrA2/Omi leads to Parkinson's disease (PD), the underlying mechanism has remained unknown. Here, we showed that HtrA2/Omi specifically removed oligomeric α-Syn but not monomeric α-Syn to protect oligomeric α-Syn-induced neurodegeneration. Experiments using mnd2 mice indicated that HtrA2/Omi degraded oligomeric α-Syn specifically without affecting monomers. Transgenic Drosophila melanogaster experiments of the co-expression α-Syn and HtrA2/Omi and expression of genes individually also confirmed that pan-neuronal expression of HtrA2/Omi completely rescued Parkinsonism in the α-Syn-induced PD Drosophila model by specifically removing oligomeric α-Syn. HtrA2/Omi maintained the health and integrity of the brain and extended the life span of transgenic flies. Because HtrA2/Omi specifically degraded oligomeric α-Syn, co-expression of HtrA2/Omi and α-Syn in Drosophila eye maintained a healthy retina, while the expression of α-Syn induced retinal degeneration. This work showed that the bacterial function of HtrA to degrade toxic misfolded proteins is evolutionarily conserved in mammalian brains as HtrA2/Omi.

References

  1. Wang, Q. et al. Elevated Hapln2 Expression Contributes to Protein Aggregation and Neurodegeneration in an Animal Model of Parkinson’s Disease. Front Aging Neurosci. 8, 197 (2016). [PMID: 27601993]
  2. Dauer, W. & Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron 39, 889–909 (2003). [DOI: 10.1016/S0896-6273(03)00568-3]
  3. Yasuda, T., Nakata, Y., Choong, C. J. & Mochizuki, H. Neurodegenerative changes initiated by presynaptic dysfunction. Transl. Neurodegener. 2, 16 (2013). [PMID: 23919415]
  4. Park, S. C. et al. Functional characterization of alpha-synuclein protein with antimicrobial activity. Biochem. Biophys. Res. Commun. 478, 924–928 (2016). [PMID: 27520375]
  5. Luk, K. C. et al. Pathological α-Synuclein Transmission Initiates Parkinson-like Neurodegeneration in Non-transgenic Mice. Science 338, 949–953 (2012). [PMID: 23161999]
  6. Taschenberger, G. et al. Aggregation of αSynuclein promotes progressive in vivo neurotoxicity in adult rat dopaminergic neurons. Acta Neuropathol. 123, 671–683 (2012). [PMID: 22167382]
  7. Cook, C. & Petrucelli, L. A critical evaluation of the ubiquitin–proteasome system in Parkinson’s diseas. e. Biochim. Biophys. Acta 1792, 664–675 (2009). [DOI: 10.1016/j.bbadis.2009.01.012]
  8. Ebrahimi-Fakhari, D. et al. Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of alpha-synuclein. J. Neurosci. 31, 14508–14520 (2011). [PMID: 21994367]
  9. Pan, T., Kondo, S., Le, W. & Jankovic, J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131, 1969–1978 (2008). [PMID: 18187492]
  10. Wang, C. & Wang, X. The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity. Biochim. Biophys. Acta 1852, 188–194 (2015). [PMID: 25092168]
  11. Ingelsson, M. Alpha-Synuclein Oligomers–Neurotoxic Molecules in Parkinson’s Disease and Other Lewy Body Disorders. Front Neurosci. 10, 408 (2016). [PMID: 27656123]
  12. Kokhan, V. S., Afanasyeva, M. A. & Van’kin, G. I. α-Synuclein knockout mice have cognitive impairments. Behav. Brain Res. 231, 226–230 (2012). [PMID: 22469626]
  13. Roostaee, A., Beaudoin, S., Staskevicius, A. & Roucou, X. Aggregation and neurotoxicity of recombinant alpha-synuclein aggregates initiated by dimerization. Mol. Neurodegener. 8, 5 (2013). [PMID: 23339399]
  14. Wan, O. W. & Chung, K. K. K. The Role of Alpha-Synuclein Oligomerization and Aggregation in Cellular and Animal Models of Parkinson’s Disease. PLoS One 7, e38545 (2012). [PMID: 22701661]
  15. Clausen, T., Southan, C. & Ehrmann, M. The HtrA Family of Proteases: Implications for Protein Composition and Cell Fate. Mol. Cell 10, 443–455 (2002). [PMID: 12408815]
  16. Lipinska, B., Sharma, S. & Georgopoulos, C. Sequence analysis and regulation of the htrA gene of Escherichia coli: a sigma 32-independent mechanism of heat-inducible transcription. Nucleic Acids Res. 16, 10053–10067 (1988). [PMID: 3057437]
  17. Liu, M. L. et al. Omi is a mammalian heat-shock protein that selectively binds and detoxifies oligomeric amyloid-β. Journal of Cell Science 122, 1917–1926 (2009). [PMID: 19435805]
  18. Martins, L. M. et al. Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol. Cell Biol. 24, 9848–9862 (2004). [PMID: 15509788]
  19. Strauss, K. M. et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum. Mol. Genet. 14, 2099–2111 (2005). [PMID: 15961413]
  20. Abou-Sleiman, P. M., Muqit, M. M. & Wood, N. W. Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat. Rev. Neurosci. 7, 207–219 (2006). [PMID: 16495942]
  21. Henchcliffe, C. & Beal, M. F. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat. Clin. Pract. Neurol. 4, 600–609 (2008). [PMID: 18978800]
  22. Breydo, L., Wu, J. W. & Uversky, V. N. α-Synuclein misfolding and Parkinson’s disease. Biochim. Biophys. Acta. 1822, 261–285 (2012). [PMID: 22024360]
  23. Ryu, E. J. et al. Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s diseas. e. J. Neurosci. 22, 10690–10698 (2002). [DOI: 10.1523/JNEUROSCI.22-24-10690.2002]
  24. Winklhofer, K. F. & Haass, C. Mitochondrial dysfunction in Parkinson’s disease. Biochim. Biophys. Acta. 1802, 29–44 (2010). [PMID: 19733240]
  25. Feany, M. B. & Bender, W. W. A Drosophila model of Parkinson’s disease. Nature 404, 394 (2000). [PMID: 10746727]
  26. Todd, A. M. & Staveley, B. E. Pink1 suppresses alpha-synuclein-induced phenotypes in a Drosophila model of Parkinson’s disease. Genome 51, 1040–1046 (2008). [PMID: 19088817]
  27. Bellani, S. et al. The regulation of synaptic function by α-synuclein. Commun. Integr. Biol. 3, 106–109 (2010). [PMID: 20585500]
  28. Burré, J. The Synaptic Function of α-Synuclein. J. Parkinsons Dis. 5, 699–713 (2015). [PMID: 26407041]
  29. M’Angale, P. G. & Staveley, B. E. Effects of α-synuclein expression in the developing Drosophila eye. Dros. Inf. Serv. 95, 85–89 (2012).
  30. Martins, L. M. et al. The Serine Protease Omi/HtrA2 Regulates Apoptosis by Binding XIAP through a Reaper-like Motif. J. Biol. Chem. 277, 439–444 (2002). [PMID: 11602612]
  31. Shi, Y. Mechanisms of Caspase Activation and Inhibition during Apoptosis. Mol. Cell. 9, 459–470 (2002). [PMID: 11931755]
  32. Srinivasula, S. M. et al. Inhibitor of Apoptosis Proteins Are Substrates for the Mitochondrial Serine Protease Omi/HtrA2. J. Biol. Chem. 278, 31469–31472 (2003). [PMID: 12835328]
  33. Crook, N. E., Clem, R. J. & Miller, L. K. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J. Virol. 67, 2168–2174 (1993). [PMID: 8445726]
  34. Jones, J. M. et al. Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 425, 721 (2003). [PMID: 14534547]
  35. Plun-Favreau, H. et al. The mitochondrial protease HtrA2 is regulated by Parkinson’s disease-associated kinase PINK. 1. Nat. Cell Biol. 9, 1243–1252 (2007). [DOI: 10.1038/ncb1644]
  36. Tain, L. S. et al. Drosophila HtrA2 is dispensable for apoptosis but acts downstream of PINK1 independently from Parkin. Cell Death Differ 16, 1118–1125 (2009). [PMID: 19282869]
  37. Yoshida, T., Mizuta, T. & Shimizu, S. Neurodegeneration in mnd2 mutant mice is not prevented by parkin transgene. Biochem. Biophys. Res. Commun. 402, 676–679 (2010). [PMID: 20971077]
  38. Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N. & Rubinsztein, D. C. α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013 (2003). [PMID: 12719433]
  39. Neumann, M. et al. Misfolded proteinase K–resistant hyperphosphorylated α-synuclein in aged transgenic mice with locomotor deterioration and in human α-synucleinopathies. J. Clin. Invest. 110, 1429–1439 (2002). [PMID: 12438441]
  40. Ugalde, C. L., Finkelstein, D. I., Lawson, V. A. & Hill, A. F. Pathogenic mechanisms of prion protein, amyloid-β and α-synuclein misfolding: the prion concept and neurotoxicity of protein oligomers. J. Neurochem. 139, 162–180 (2016). [PMID: 27529376]
  41. Cassone, M., Gagne, A. L., Spruce, L. A., Seeholzer, S. H. & Sebert, M. E. The HtrA Protease from Streptococcus pneumoniae Digests Both Denatured Proteins and the Competence-stimulating Peptide. J. Biol. Chem. 287, 38449–38459 (2012). [PMID: 23012372]
  42. White, K. E., Humphrey, D. M. & Hirth, F. The dopaminergic system in the aging brain of drosophila. Front Neurosci. 4, 205 (2010). [PMID: 21165178]
  43. Chung, H. J., Sharma, S. P., Kim, H. J., Baek, S. H. & Hong, S. T. The resveratrol-enriched rice DJ526 boosts motor coordination and physical strength. Sci. Rep. 6, 23958 (2016). [PMID: 27044601]
  44. Hawrot, E. & Patterson, P. H. Long term culthre of dissociated sympathetic neurons. Methods Enzymol. 58, 574–584 (1979). [PMID: 423793]

MeSH Term

Animals
Animals, Genetically Modified
Brain
Disease Models, Animal
Drosophila melanogaster
Female
High-Temperature Requirement A Serine Peptidase 2
Humans
Male
Mice
Mice, Inbred C57BL
Neurons
Parkinson Disease
alpha-Synuclein

Chemicals

alpha-Synuclein
HTRA2 protein, human
High-Temperature Requirement A Serine Peptidase 2

Word Cloud

Created with Highcharts 10.0.0HtrA2/Omiα-SynoligomericspecificallyDrosophilaexpressionPDshowedα-Syn-induceddegradedco-expressionmaintainedbacterialfunctionHtrAconservedmammalianAlthoughmalfunctionleadsParkinson'sdiseaseunderlyingmechanismremainedunknownremovedmonomericprotectneurodegenerationExperimentsusingmnd2miceindicatedwithoutaffectingmonomersTransgenicmelanogasterexperimentsgenesindividuallyalsoconfirmedpan-neuronalcompletelyrescuedParkinsonismmodelremovinghealthintegritybrainextendedlifespantransgenicflieseyehealthyretinainducedretinaldegenerationworkdegradetoxicmisfoldedproteinsevolutionarilybrainsevolutionally

Similar Articles

Cited By