Characterisation of Microbial Community Associated with Different Disinfection Treatments in Hospital hot Water Networks.

Stefania Paduano, Isabella Marchesi, Maria Elisabetta Casali, Federica Valeriani, Giuseppina Frezza, Elena Vecchi, Luca Sircana, Vincenzo Romano Spica, Paola Borella, Annalisa Bargellini
Author Information
  1. Stefania Paduano: Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy. ORCID
  2. Isabella Marchesi: Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy.
  3. Maria Elisabetta Casali: Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy.
  4. Federica Valeriani: Department of Movement, Human and Health Sciences, Public Health Unit, University of Rome 'Foro Italico', 00135 Rome, Italy.
  5. Giuseppina Frezza: Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy.
  6. Elena Vecchi: University Hospital Policlinico of Modena, 41124 Modena, Italy.
  7. Luca Sircana: University Hospital Policlinico of Modena, 41124 Modena, Italy.
  8. Vincenzo Romano Spica: Department of Movement, Human and Health Sciences, Public Health Unit, University of Rome 'Foro Italico', 00135 Rome, Italy.
  9. Paola Borella: Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy.
  10. Annalisa Bargellini: Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 41125 Modena, Italy. ORCID

Abstract

Many disinfection treatments can be adopted for controlling opportunistic pathogens in hospital water networks in order to reduce infection risk for immunocompromised patients. Each method has limits and strengths and it could determine modifications on bacterial community. The aim of our investigation was to study under real-life conditions the microbial community associated with different chemical (monochloramine, hydrogen peroxide, chlorine dioxide) and non-chemical (hyperthermia) treatments, continuously applied since many years in four hot water networks of the same hospital. Municipal cold water, untreated secondary, and treated hot water were analysed for microbiome characterization by 16S amplicon sequencing. Cold waters had a common microbial profile at genera level. The hot water bacterial profiles differed according to treatment. Our results confirm the effectiveness of disinfection strategies in our hospital for controlling potential pathogens such as , as the investigated genera containing opportunistic pathogens were absent or had relative abundances ���1%, except for non-tuberculous mycobacteria, , and . Monitoring the microbial complexity of healthcare water networks through 16S amplicon sequencing is an innovative and effective approach useful for Public Health purpose in order to verify possible modifications of microbiota associated with disinfection treatments.

Keywords

References

  1. Water Res. 2012 Mar 1;46(3):882-94 [PMID: 22192761]
  2. Bioresour Technol. 2013 Nov;147:234-239 [PMID: 23994965]
  3. Int J Mol Sci. 2013 Oct 31;14(11):21660-75 [PMID: 24185913]
  4. Environ Sci Technol. 2014;48(3):1426-35 [PMID: 24401122]
  5. Ann Ig. 2016 Mar-Apr;28(2):98-108 [PMID: 27071320]
  6. J Pathog. 2015;2015:809014 [PMID: 26618006]
  7. PLoS One. 2014 Jul 17;9(7):e102679 [PMID: 25033448]
  8. Clin Infect Dis. 2008 May 1;46(9):1485-7 [PMID: 18419467]
  9. PLoS One. 2016 Jun 30;11(6):e0157966 [PMID: 27362708]
  10. Appl Environ Microbiol. 2016 May 02;82(10):2959-2965 [PMID: 26969696]
  11. Arch Microbiol. 2004 Apr;181(4):269-77 [PMID: 14745485]
  12. Chemosphere. 2017 Dec;189:399-406 [PMID: 28950119]
  13. PLoS One. 2013 May 07;8(5):e62901 [PMID: 23667538]
  14. Appl Environ Microbiol. 2012 Nov;78(22):7856-65 [PMID: 22941076]
  15. Int J Environ Res Public Health. 2019 May 31;16(11): [PMID: 31159184]
  16. Water Res. 2016 Mar 1;90:216-224 [PMID: 26734781]
  17. Sci Total Environ. 2012 Oct 1;435-436:124-31 [PMID: 22846772]
  18. Environ Sci Technol. 2014 May 20;48(10):5448-57 [PMID: 24754322]
  19. Microb Biotechnol. 2017 Jul;10(4):773-788 [PMID: 28097816]
  20. Appl Environ Microbiol. 2012 Sep;78(17):6095-102 [PMID: 22729545]
  21. APMIS. 2003 May;111(5):546-56 [PMID: 12887506]
  22. Microbiologyopen. 2019 May;8(5):e00726 [PMID: 30318762]
  23. Appl Environ Microbiol. 2016 Apr 18;82(9):2656-2668 [PMID: 26896135]
  24. PLoS One. 2013;8(2):e47879 [PMID: 23408926]
  25. Water Res. 2011 Mar;45(6):2315-21 [PMID: 21316728]
  26. Oecologia. 1981 Sep;50(3):296-302 [PMID: 28309044]
  27. Appl Environ Microbiol. 2010 Nov;76(21):7171-80 [PMID: 20851995]
  28. Mol Microbiol. 2008 Jul;69(1):164-74 [PMID: 18466296]
  29. Int J Environ Res Public Health. 2018 Jul 27;15(8): [PMID: 30060459]
  30. Appl Environ Microbiol. 2016 Apr 18;82(9):2872-2883 [PMID: 26969701]
  31. Environ Sci Technol. 2017 Jun 20;51(12):7065-7075 [PMID: 28513143]
  32. Front Microbiol. 2015 Oct 26;6:1166 [PMID: 26579081]
  33. Genomics. 2011 Aug;98(2):152-3 [PMID: 21651976]
  34. Arch Intern Med. 2002 Jul 8;162(13):1483-92 [PMID: 12090885]
  35. Water Res. 2018 Aug 1;139:406-419 [PMID: 29673939]
  36. New Microbiol. 2018 Apr;41(2):126-135 [PMID: 29498741]
  37. Syst Appl Microbiol. 2015 May;38(3):198-205 [PMID: 25840824]
  38. Curr Opin Infect Dis. 2003 Aug;16(4):343-7 [PMID: 12861087]
  39. Curr Opin Biotechnol. 2006 Jun;17(3):297-302 [PMID: 16701992]
  40. J Microbiol Biotechnol. 2010 Apr;20(4):779-81 [PMID: 20467253]
  41. Cell. 2005 Dec 2;123(5):861-73 [PMID: 16325580]
  42. PLoS Negl Trop Dis. 2019 Sep 5;13(9):e0007672 [PMID: 31487283]
  43. Curr Infect Dis Rep. 2014 Oct;16(10):432 [PMID: 25217106]
  44. Nat Rev Microbiol. 2010 Sep;8(9):623-33 [PMID: 20676145]
  45. Environ Sci Technol. 2018 Feb 20;52(4):1889-1898 [PMID: 29376332]
  46. Nucleic Acids Res. 2012 Jul;40(Web Server issue):W88-95 [PMID: 22645318]
  47. J Hosp Infect. 2011 Jan;77(1):47-51 [PMID: 21131100]
  48. Int J Environ Res Public Health. 2015 Apr 24;12(5):4533-45 [PMID: 25918909]
  49. Biofouling. 2005;21(5-6):279-88 [PMID: 16522541]
  50. Curr Opin Biotechnol. 2015 Jun;33:87-94 [PMID: 25578740]
  51. Water Sci Technol. 2011;64(6):1226-32 [PMID: 22214074]
  52. J Hosp Infect. 2002 Mar;50(3):213-9 [PMID: 11886198]
  53. Water Res. 2007 Apr;41(8):1667-78 [PMID: 17360020]
  54. J Clin Microbiol. 2009 Oct;47(10):3226-30 [PMID: 19587299]
  55. Microb Ecol. 2017 Jul;74(1):116-127 [PMID: 28105510]
  56. Environ Sci Technol. 2013 Sep 17;47(18):10117-28 [PMID: 23962186]
  57. Infect Control Hosp Epidemiol. 2014 Mar;35(3):293-9 [PMID: 24521596]
  58. Trends Microbiol. 2001 May;9(5):222-7 [PMID: 11336839]
  59. J Water Health. 2013 Dec;11(4):738-47 [PMID: 24334848]
  60. Biometrics. 2006 Jun;62(2):361-71 [PMID: 16918900]
  61. Water Res. 2017 Jun 15;117:68-86 [PMID: 28390237]
  62. J Appl Microbiol. 2012 Nov;113(5):1014-26 [PMID: 22747964]
  63. Infect Control Hosp Epidemiol. 2011 Feb;32(2):166-73 [PMID: 21460472]
  64. Appl Environ Microbiol. 2004 Dec;70(12):7571-3 [PMID: 15574964]
  65. J Bacteriol. 1997 Apr;179(7):2401-9 [PMID: 9079928]
  66. Appl Environ Microbiol. 1981 Jan;41(1):288-97 [PMID: 16345695]

MeSH Term

Disinfection
Hospitals
Humans
Legionella
Microbiota
Water Microbiology
Water Purification
Water Supply

Word Cloud

Created with Highcharts 10.0.0waterpathogenshospitalmicrobialhotdisinfectiontreatmentsopportunisticnetworks16SampliconsequencingcontrollingordermodificationsbacterialcommunityassociatedmicrobiomegeneraManycanadoptedreduceinfectionriskimmunocompromisedpatientsmethodlimitsstrengthsdetermineaiminvestigationstudyreal-lifeconditionsdifferentchemicalmonochloraminehydrogenperoxidechlorinedioxidenon-chemicalhyperthermiacontinuouslyappliedsincemanyyearsfourMunicipalcolduntreatedsecondarytreatedanalysedcharacterizationColdwaterscommonprofilelevelprofilesdifferedaccordingtreatmentresultsconfirmeffectivenessstrategiespotentialinvestigatedcontainingabsentrelativeabundances���1%exceptnon-tuberculousmycobacteriaMonitoringcomplexityhealthcareinnovativeeffectiveapproachusefulPublicHealthpurposeverifypossiblemicrobiotaCharacterisationMicrobialCommunityAssociatedDifferentDisinfectionTreatmentsHospitalWaterNetworksbiocidesenvironmentalbuildingecologydistributionsystemswaterborne

Similar Articles

Cited By