Somatodendritic consistency check for temporal feature segmentation.

Toshitake Asabuki, Tomoki Fukai
Author Information
  1. Toshitake Asabuki: Department of Complexity Science and Engineering, University of Tokyo, Kashiwa, Chiba, 277-8561, Japan.
  2. Tomoki Fukai: Department of Complexity Science and Engineering, University of Tokyo, Kashiwa, Chiba, 277-8561, Japan. tomoki.fukai@oist.jp.

Abstract

The brain identifies potentially salient features within continuous information streams to process hierarchical temporal events. This requires the compression of information streams, for which effective computational principles are yet to be explored. Backpropagating action potentials can induce synaptic plasticity in the dendrites of cortical pyramidal neurons. By analogy with this effect, we model a self-supervising process that increases the similarity between dendritic and somatic activities where the somatic activity is normalized by a running average. We further show that a family of networks composed of the two-compartment neurons performs a surprisingly wide variety of complex unsupervised learning tasks, including chunking of temporal sequences and the source separation of mixed correlated signals. Common methods applicable to these temporal feature analyses were previously unknown. Our results suggest the powerful ability of neural networks with dendrites to analyze temporal features. This simple neuron model may also be potentially useful in neural engineering applications.

References

  1. Dehaene, S., Meyniel, F., Wacongne, C., Wang, L. & Pallier, C. The neural representation of sequences: from transition probabilities to algebraic patterns and linguistic trees. Neuron 88, 2–19 (2015). [DOI: 10.1016/j.neuron.2015.09.019]
  2. Fujii, N. & Graybiel, A. M. Representation of action sequence boundaries by macaque prefrontal cortical neurons. Science 301, 1246–1249 (2003). [DOI: 10.1126/science.1086872]
  3. Jin., X. & Costa, R. M. Start/stop signals emerge in nigrostriatal circuits during sequence learning. Nature 466, 457–462 (2010). [DOI: 10.1038/nature09263]
  4. Jin., X., Tecuapetla, F. & Costa, R. M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17, 423–430 (2014). [DOI: 10.1038/nn.3632]
  5. Schapiro, A. C., Rogers, T. T., Cordova, N. I., Turk-Browne, N. B. & Botvinick, M. M. Neural representations of events arise from temporal community structure. Nat. Neurosci. 16, 486–492 (2013). [DOI: 10.1038/nn.3331]
  6. Zacks, J. M. et al. Human brain activity time-locked to perceptual event boundaries. Nat. Neurosci. 18, 449–455 (2001).
  7. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010). [DOI: 10.1038/nrn2787]
  8. Bastos, A. M. et al. Canonical microcircuits for predictive coding. Neuron 76, 695–711 (2012). [DOI: 10.1016/j.neuron.2012.10.038]
  9. Keller, G. B. & Mrsic-Flogel, T. D. Predictive processing: a canonical cortical computation. Neuron 100, 424–435 (2018). [DOI: 10.1016/j.neuron.2018.10.003]
  10. McDermott, J. H. The cocktail party problem. Curr. Biol. 19, 1024–1027 (2009). [DOI: 10.1016/j.cub.2009.09.005]
  11. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999). [DOI: 10.1038/18686]
  12. Linden, D. J. The return of the spike: postsynaptic action potentials and the induction of LTP and LTD. Neuron 22, 661–666 (1999). [DOI: 10.1016/S0896-6273(00)80726-6]
  13. Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997). [DOI: 10.1126/science.275.5297.213]
  14. Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997). [DOI: 10.1126/science.275.5297.209]
  15. Sjöström, P. J. & Häusser, M. A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51, 227–238 (2006). [DOI: 10.1016/j.neuron.2006.06.017]
  16. Fairhall, A. L., Lewen, G. D., Bialek, W. & de Ruyter Van Steveninck, R. R. Efficiency and ambiguity in an adaptive neural code. Nature 412, 787–792 (2001). [DOI: 10.1038/35090500]
  17. Maravall, M., Petersen, R. S., Fairhall, A. L., Arabzadeh, E. & Diamond, M. E. Shifts in coding properties and maintenance of information transmission during adaptation in barrel cortex. PLoS Biol. 5, e19 (2007). [DOI: 10.1371/journal.pbio.0050019]
  18. Mensi, S., Hagens, O., Gerstner, W. & Pozzorini, C. Enhanced sensitivity to rapid input fluctuations by nonlinear threshold dynamics in neocortical pyramidal neurons. PLoS Comput. Biol. 12, e1004761 (2016). [DOI: 10.1371/journal.pcbi.1004761]
  19. Pozzorini, C., Naud, R., Mensi, S. & Gerstner, W. Temporal whitening by power-law adaptation in neocortical neurons. Nature Neurosci. 16, 942–948 (2013). [DOI: 10.1038/nn.3431]
  20. Comon, P. Independent component analysis, a new concept? Signal Process. 36, 287–314 (1994). [DOI: 10.1016/0165-1684(94)90029-9]
  21. Amari, S. & Cardoso, J. F. Blind source separation – semiparametric statistical approach. IEEE Trans. Signal Process. 45, 2692–2700 (1997). [DOI: 10.1109/78.650095]
  22. Hyvärinen, A. & Oja, E. Independent component analysis: algorithms and applications. Neural Netw. 13, 411–430 (2000). [DOI: 10.1016/S0893-6080(00)00026-5]
  23. Kameoka, H., Li, L., Inoue, S. & Makino, S. Supervised determined source separation with multichannel variational autoencoder. Neural Computation. 31, 1–24 (2019). [DOI: 10.1162/neco_a_01217]
  24. Urbanczik., R. & Senn, W. Learning by the dendritic prediction of somatic spiking. Neuron 81, 521–528 (2014). [DOI: 10.1016/j.neuron.2013.11.030]
  25. Wiskott, L. & Sejnowski, T. J. Slow feature analysis: unsupervised learning of invariances. Neural Comput. 14, 715–770 (2002). [DOI: 10.1162/089976602317318938]
  26. Belouchrani, A., Abed-Meraim, K., Cardoso, J. F. & Moulines, E. A blind source separation technique using second-order statistics. IEEE Trans. Signal Process. 45, 434–444 (1997). [DOI: 10.1109/78.554307]
  27. Larkum, M. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci. 36, 141–151 (2013). [DOI: 10.1016/j.tins.2012.11.006]
  28. Pfister, J. P., Toyoizumi, T., Barber, D. & Gerstner, W. Optimal spike-timing dependent plasticity for precise action potential firing. Neural Comput. 18, 1318–1348 (2006). [DOI: 10.1162/neco.2006.18.6.1318]
  29. Buiatti, M., Peña, M. & Dehaene-Lambertz, G. Investigating the neural correlates of continuous speech computation with frequency-tagged neuroelectric responses. Neuroimage 44, 509–519 (2009). [DOI: 10.1016/j.neuroimage.2008.09.015]
  30. Gentner, T. Q., Fenn, K. M., Margoliash, D. & Nusbaum, H. C. Recursive syntactic pattern learning by songbirds. Nature 440, 1204–1207 (2006). [DOI: 10.1038/nature04675]
  31. Smith, K. S. & Graybiel, A. M. A dual operator view of habitual behavior reflecting cortical and striatal dynamics. Neuron 79, 361–374 (2013). [DOI: 10.1016/j.neuron.2013.05.038]
  32. Branco, T., Clark, B. A. & Häusser, M. Dendritic discrimination of temporal input sequences in cortical neurons. Science 329, 1671–1675 (2010). [DOI: 10.1126/science.1189664]
  33. Lu, J. T., Li, C. Y., Zhao, J. P., Poo, M. M. & Zhang, X. H. Spike-timing-dependent plasticity of neocortical excitatory synapses on inhibitory interneurons depends on target cell type. J. Neurosci. 27, 9711–9720 (2007). [DOI: 10.1523/JNEUROSCI.2513-07.2007]
  34. Woodin, M. A., Ganguly, K. & Poo, M. M. Coincident pre-and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl− transporter activity. Neuron 39, 807–820 (2003). [DOI: 10.1016/S0896-6273(03)00507-5]
  35. Vogels, T. P., Sprekeler, H., Zenke, F., Clopath, C. & Gerstner, W. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334, 1569–1573 (2011). [DOI: 10.1126/science.1211095]
  36. Földiak, P. Forming sparse representations by local anti-Hebbian learning. Biol. Cybern. 64, 165–170 (1990). [DOI: 10.1007/BF02331346]
  37. Bishop, C. M. Training with noise is equivalent to Tikhonov regularization. Neural Comput. 7, 108–116 (1995). [DOI: 10.1162/neco.1995.7.1.108]
  38. Agus, T. R., Thorpe, S. J. & Pressnitzer, D. Rapid formation of robust auditory memories: insights from noise. Neuron 66, 610–618 (2010). [DOI: 10.1016/j.neuron.2010.04.014]
  39. Masquelier, T., Guyonneau, R. & Thorpe, S. J. Competitive STDP-based spike pattern learning. Neural Comput. 21, 1259–1276 (2009). [DOI: 10.1162/neco.2008.06-08-804]
  40. Nessler, B., Pfeiffer, M., Buesing, L. & Maass, W. Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity. PLoS Comput. Biol. 9, e1003037 (2013). [DOI: 10.1371/journal.pcbi.1003037]
  41. Pierre, P. What mechanisms underlie implicit statistical learning? transitional probabilities versus chunks in language learning. Top. Cogn. Sci. 11, 520–535 (2018).
  42. Hubel, D. H. & Wiesel, T. N. Receptive fields of single neurons in the cat’s striate cortex. J. Physiol. 148, 574–591 (1959). [DOI: 10.1113/jphysiol.1959.sp006308]
  43. Olshausen, B. A. & Field, D. J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996). [DOI: 10.1038/381607a0]
  44. Duan, Z. & Pardo, B. Soundprism: an online system for score-informed source separation of music audio. IEEE J. Sele. Top. Signal Process. 5, 1205–1215 (2011). [DOI: 10.1109/JSTSP.2011.2159701]
  45. Hyvärinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10, 626–634 (1999). [DOI: 10.1109/72.761722]
  46. Zito, T., Wilbert, T., Wiskott, L. & Berkes, P. Modular toolkit for Data Processing (MDP): a Python data processing framework. Front. Neuroinform. 2, 8 (2009). [PMID: 19169361]
  47. Clopath, C., Longtin, A. & Gerstner, W. An online Hebbian learning rule that performs independent component analysis. BMC Neurosci. 9, 321–328 (2008).
  48. Sprekeler, H., Zito, T. & Wiskott, L. An extension of slow feature analysis for nonlinear blind source separation. J. Mach. Learn. Res. 15, 921–947 (2014).
  49. Savin, C., Joshi, P. & Triesch, J. Independent component analysis in spiking neurons. PLoS Comput. Biol. 6, e1000757 (2010). [DOI: 10.1371/journal.pcbi.1000757]
  50. Sprekeler, H., Michaelis, C. & Wiskott, L. Slowness: An objective for spike timing-dependent plasticity? PLoS Comput. Biol. 3, e112 (2007). [DOI: 10.1371/journal.pcbi.0030112]
  51. Rabinovich, M., Varona, P., Tristan, I. & Afraimovich, V. Chunking dynamics: heteroclinics in mind. Front. Comput. Neurosci. 8, 22 (2014). [DOI: 10.3389/fncom.2014.00022]
  52. Fonollosa, J., Neftci, E. & Rabinovich, M. Learning of chunking sequences in cognition and behavior. PLoS Comput. Biol. 11, e1004592 (2015). [DOI: 10.1371/journal.pcbi.1004592]
  53. Wacongne, C., Changeux, J. P. & Dehaene, S. A neuronal model of predictive coding accounting for the mismatch negativity. J. Neurosci. 32, 3665–3678 (2012). [DOI: 10.1523/JNEUROSCI.5003-11.2012]
  54. Kiebel, S. J., Kriegstein, K. V., Daunizeau, D. & Friston, K. J. Recognizing sequences of sequences. PLoS Comput. Biol. 6, e1000464 (2009). [DOI: 10.1371/journal.pcbi.1000464]
  55. Asabuki, T., Hiratani, N. & Fukai, T. Interactive reservoir computing for chunking information streams. PLoS Comput. Biol. 14, e1006400 (2018). [DOI: 10.1371/journal.pcbi.1006400]
  56. Rieke, F., Warland, D., de Ruyter van Stevenick, R. & Bialek, W. Spikes (Cambridge, MA: Massachusetts Institute of Technology, 1997).
  57. Linsker, R. Perceptual neural organization: some approaches based on network models and information theory. Annu. Rev. Neurosci. 13, 257–281 (1990). [DOI: 10.1146/annurev.ne.13.030190.001353]
  58. Tishby, N., Pereira, F. C. & Bialek, W. The information bottleneck method. Proceedings of the 37th annual Allerton Conference on Communication, Control, and Computing, 368–377 (1999).
  59. Murayama, M. et al. Dendritic encoding of sensory stimuli controlled by deep cortical interneurons. Nature 457, 1137–1141 (2009). [DOI: 10.1038/nature07663]
  60. Titley, H. K., Brunel, N. & Hansel, C. Toward a neurocentric view of learning. Neuron 95, 19–32 (2017). [DOI: 10.1016/j.neuron.2017.05.021]
  61. Memmesheimer, R. M., Rubin, R., Ölveczky, B. P. & Sompolinsky, H. Learning precisely timed spikes. Neuron 82, 925–938 (2014). [DOI: 10.1016/j.neuron.2014.03.026]
  62. Legenstein, R. & Maass, W. Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. J. Neurosci. 31, 10787–10802 (2011). [DOI: 10.1523/JNEUROSCI.5684-10.2011]
  63. Sacramento, J., Costa, R. P., Bengio, Y. & Senn, W. Dendritic error backpropagation in deep cortical microcircuits. arXiv:1801.00062 (2017).
  64. Hiratani, N. & Fukai, T. Redundancy in synaptic connections enables neurons to learn optimally. Proc. Natl Acad. Sci. USA 115, E6871–E6879 (2018). [DOI: 10.1073/pnas.1803274115]
  65. Jahnke, S., Timme, M. & Memmesheimer, R. M. A unified dynamic model for learning, replay, and sharp-wave/ripples. J. Neurosci. 35, 16236–16258 (2015). [DOI: 10.1523/JNEUROSCI.3977-14.2015]
  66. Bhalla, U. S. Synaptic input sequence discrimination on behavioral timescales mediated by reaction-diffusion chemistry in dendrites. Elife 6, e25827 (2017). [DOI: 10.7554/eLife.25827]
  67. Hawkins, J. & Ahmad, S. Why neurons have thousands of synapses, a theory of sequence memory in neocortex. Front. Neural Circuits 10, 23 (2016). [DOI: 10.3389/fncir.2016.00023]
  68. Richards, B. A. & Lillicrap, T. P. Dendritic solutions to the credit assignment problem. Curr. Opin. Neurobiol. 54, 28–36 (2019). [DOI: 10.1016/j.conb.2018.08.003]
  69. Ujfalussy, B., Makara, J. K., Lengyel, M. & Branco, T. Global and multiplexed dendritic computations under in vivo-like conditions. Neuron 100, 579–592 (2018). [DOI: 10.1016/j.neuron.2018.08.032]
  70. Bienenstock, E. L., Cooper, L. N. & Munro, P. W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982). [DOI: 10.1523/JNEUROSCI.02-01-00032.1982]

MeSH Term

Action Potentials
Brain
Computational Biology
Dendrites
Learning
Membrane Potentials
Models, Neurological
Nerve Net
Neuronal Plasticity
Neurons

Word Cloud

Created with Highcharts 10.0.0temporalpotentiallyfeaturesinformationstreamsprocessdendritesneuronsmodelsomaticnetworksfeatureneuralbrainidentifiessalientwithincontinuoushierarchicaleventsrequirescompressioneffectivecomputationalprinciplesyetexploredBackpropagatingactionpotentialscaninducesynapticplasticitycorticalpyramidalanalogyeffectself-supervisingincreasessimilaritydendriticactivitiesactivitynormalizedrunningaverageshowfamilycomposedtwo-compartmentperformssurprisinglywidevarietycomplexunsupervisedlearningtasksincludingchunkingsequencessourceseparationmixedcorrelatedsignalsCommonmethodsapplicableanalysespreviouslyunknownresultssuggestpowerfulabilityanalyzesimpleneuronmayalsousefulengineeringapplicationsSomatodendriticconsistencychecksegmentation

Similar Articles

Cited By (5)