Antimicrobial activity of RP-1 peptide conjugate with ferrocene group.

Natalia C S Costa, Julia P Piccoli, Norival A Santos-Filho, Leandro C Clementino, Ana M Fusco-Almeida, Sarah R De Annunzio, Carla R Fontana, Juliane B M Verga, Silas F Eto, João M Pizauro-Junior, Marcia A S Graminha, Eduardo M Cilli
Author Information
  1. Natalia C S Costa: Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil.
  2. Julia P Piccoli: Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil.
  3. Norival A Santos-Filho: Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil. ORCID
  4. Leandro C Clementino: Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.
  5. Ana M Fusco-Almeida: Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.
  6. Sarah R De Annunzio: Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.
  7. Carla R Fontana: Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.
  8. Juliane B M Verga: Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.
  9. Silas F Eto: Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Araraquara, Brazil. ORCID
  10. João M Pizauro-Junior: Faculty of Agrarian and Veterinary Sciences, São Paulo State University (UNESP), Araraquara, Brazil.
  11. Marcia A S Graminha: Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil.
  12. Eduardo M Cilli: Department of Biochemistry and Technological Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, Brazil. ORCID

Abstract

Parasitic diseases are a neglected and serious problem, especially in underdeveloped countries. Among the major parasitic diseases, Leishmaniasis figures as an urgent challenge due to its high incidence and severity. At the same time, the indiscriminate use of antibiotics by the population is increasing together with resistance to medicines. To address this problem, new antibiotic-like molecules that directly kill or inhibit the growth of microorganisms are necessary, where antimicrobial peptides (AMPs) can be of great help. In this work, the ferrocene molecule, one active compound with low levels of in vivo toxicity, was coupled to the N-terminus of the RP1 peptide (derived from the human chemokine CXCL4), aiming to evaluate how this change modifies the structure, biological activity, and toxicity of the peptide. The peptide and the conjugate were synthesized using the solid phase peptide synthesis (SPPS). Circular dichroism assays in PBS showed that the RP1 peptide and its conjugate had a typical spectrum for disordered structures. The Fc-RP1 presented anti-amastigote activity against Leishmania amazonensis (IC50 = 0.25 μmol L-1). In comparison with amphotericin B, a second-line drug approved for leishmaniasis treatment, (IC50 = 0.63 μmol L-1), Fc-RP1 was more active and showed a 2.5-fold higher selectivity index. The RP1 peptide presented a MIC of 4.3 μmol L-1 against S. agalactiae, whilst Fc-RP1 was four times more active (MIC = 0.96 μmol L-1), indicating that ferrocene improved the antimicrobial activity against Gram-positive bacteria. The Fc-RP1 peptide also decreased the minimum inhibitory concentration (MIC) in the assays against E. faecalis (MIC = 7.9 μmol L-1), E. coli (MIC = 3.9 μmol L-1) and S. aureus (MIC = 3.9 μmol L-1). The cytotoxicity of the compounds was tested against HaCaT cells, and no significant activity at the highest concentration tested (500 μg. mL-1) was observed, showing the high potential of this new compound as a possible new drug. The coupling of ferrocene also increased the vesicle permeabilization of the peptide, showing a direct relation between high peptide concentration and high carboxyfluorescein release, which indicates the action mechanism by pore formation on the vesicles. Several studies have shown that ferrocene destabilizes cell membranes through lipid peroxidation, leading to cell lysis. It is noteworthy that the Fc-RP1 peptide synthesized here is a prototype of a bioconjugation strategy, but it still is a compound with great biological activity against neglected and fish diseases.

References

  1. Curr Drug Targets. 2012 Aug;13(9):1138-47 [PMID: 22664071]
  2. Antimicrob Agents Chemother. 1998 Mar;42(3):540-4 [PMID: 9517929]
  3. PLoS One. 2018 Sep 7;13(9):e0203451 [PMID: 30192822]
  4. Toxicon. 2007 Dec 15;50(8):1201-4 [PMID: 17826814]
  5. Front Microbiol. 2013 Dec 09;4:353 [PMID: 24367355]
  6. Biopolymers. 2009 Jan;91(1):1-13 [PMID: 18712851]
  7. J Inorg Biochem. 2017 Jun;171:76-89 [PMID: 28371681]
  8. Biopolymers. 2006;84(2):169-80 [PMID: 16170802]
  9. Int J Parasitol Drugs Drug Resist. 2014 Sep 22;5(1):26-35 [PMID: 25941624]
  10. FASEB J. 2008 Jun;22(6):1817-28 [PMID: 18230684]
  11. Mem Inst Oswaldo Cruz. 2005 Nov;100(7):733-4 [PMID: 16410960]
  12. Pharmaceuticals (Basel). 2013 Aug 21;6(8):1055-81 [PMID: 24276381]
  13. Anal Chim Acta. 2015 May 30;876:9-25 [PMID: 25998454]
  14. Clin Microbiol Infect. 2016 Jan;22(1):12-21 [PMID: 26493844]
  15. Amino Acids. 2013 Jun;44(6):1521-8 [PMID: 23519707]
  16. J Phys Chem B. 2017 Dec 14;121(49):11085-11095 [PMID: 29148803]
  17. Clin Microbiol Rev. 2013 Apr;26(2):185-230 [PMID: 23554414]
  18. Antimicrob Agents Chemother. 2014 Aug;58(8):4837-47 [PMID: 24913171]
  19. Microbiol Spectr. 2017 May;5(3): [PMID: 28513415]
  20. Fish Shellfish Immunol. 2018 May;76:153-160 [PMID: 29501881]
  21. Nat Rev Drug Discov. 2012 Oct;11(10):751-61 [PMID: 22935759]
  22. Chem Soc Rev. 2015 Dec 21;44(24):8802-17 [PMID: 26486993]
  23. J Biomed Nanotechnol. 2017 Feb;13(2):117-33 [PMID: 29376626]
  24. Antimicrob Agents Chemother. 2012 Feb;56(2):658-65 [PMID: 22123683]
  25. J Vet Med Sci. 2015 Jan;77(1):59-65 [PMID: 25720807]
  26. PLoS Negl Trop Dis. 2015 Feb 13;9(2):e0003476 [PMID: 25679388]
  27. PLoS One. 2017 Mar 20;12(3):e0174024 [PMID: 28319176]
  28. Med Princ Pract. 2016;25(4):301-8 [PMID: 26684017]
  29. Am J Trop Med Hyg. 2015 Dec;93(6):1214-8 [PMID: 26483120]
  30. Asian Pac J Trop Med. 2016 Oct;9(10):925-932 [PMID: 27794384]
  31. Angew Chem Int Ed Engl. 2015 Aug 24;54(35):10230-3 [PMID: 26179051]
  32. Curr Opin Microbiol. 2016 Oct;33:67-73 [PMID: 27421070]
  33. Fish Shellfish Immunol. 2019 Mar;86:785-793 [PMID: 30553889]
  34. Chem Phys Lipids. 2010 Jun;163(6):488-97 [PMID: 20362562]
  35. Acta Crystallogr D Struct Biol. 2018 Dec 1;74(Pt 12):1233-1244 [PMID: 30605137]
  36. Mini Rev Med Chem. 2017;17(9):771-784 [PMID: 27804886]
  37. Dalton Trans. 2011 Oct 7;40(37):9557-65 [PMID: 21850331]
  38. J Orthop Res. 2018 Jan;36(1):22-32 [PMID: 28722231]
  39. Antimicrob Agents Chemother. 2017 Jul 25;61(8): [PMID: 28507113]
  40. Scand J Infect Dis. 2011 Jul;43(6-7):545-6 [PMID: 21309637]
  41. Bioorg Med Chem Lett. 2015 Aug 15;25(16):3342-5 [PMID: 26055530]
  42. Biopolymers. 2007;88(2):108-14 [PMID: 17266125]
  43. Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3047-54 [PMID: 25701232]
  44. Genome Biol. 2008;9(7):R115 [PMID: 18638379]
  45. ACS Chem Biol. 2013 Jul 19;8(7):1442-50 [PMID: 23578171]
  46. J Nat Prod. 2012 May 25;75(5):991-5 [PMID: 22559947]
  47. FEBS J. 2009 Nov;276(22):6497-508 [PMID: 19817855]
  48. Peptides. 2008 Sep;29(9):1526-33 [PMID: 18584916]
  49. Trends Microbiol. 2012 Jan;20(1):40-9 [PMID: 22169461]
  50. Rev Soc Bras Med Trop. 2015 May-Jun;48(3):235-42 [PMID: 26107999]
  51. Bioorg Med Chem Lett. 2014 Apr 1;24(7):1707-10 [PMID: 24630563]
  52. Dalton Trans. 2012 Jun 7;41(21):6451-7 [PMID: 22240736]
  53. Curr Biol. 2016 Jan 11;26(1):R14-9 [PMID: 26766224]
  54. Amino Acids. 2014 Nov;46(11):2627-31 [PMID: 25209238]
  55. Sci Data. 2014 Sep 30;1:140036 [PMID: 25984344]
  56. Biochemistry. 1964 Sep;3:1385-90 [PMID: 14229685]
  57. Anal Biochem. 1990 Nov 15;191(1):110-8 [PMID: 2077933]
  58. Science. 2005 Jul 22;309(5734):570-4 [PMID: 16040698]
  59. Mol Microbiol. 2006 Dec;62(5):1484-97 [PMID: 17074074]
  60. Prog Mol Biol Transl Sci. 2011;103:231-75 [PMID: 21999998]
  61. J Infect Public Health. 2017 Jul - Aug;10(4):369-378 [PMID: 27616769]
  62. Int J Mol Sci. 2016 May 11;17(5): [PMID: 27187357]
  63. Arch Pharm (Weinheim). 2016 Jan;349(1):50-62 [PMID: 26627058]
  64. Int J Appl Basic Med Res. 2013 Jan;3(1):3-10 [PMID: 23776832]
  65. Trop Med Int Health. 2001 Nov;6(11):849-54 [PMID: 11703838]
  66. Eur J Biochem. 2000 Sep;267(17):5421-6 [PMID: 10951200]
  67. Dalton Trans. 2019 Feb 26;48(9):3146 [PMID: 30730525]
  68. Pharmaceuticals (Basel). 2016 Sep 20;9(3): [PMID: 27657092]
  69. Nature. 2016 Jan 21;529(7586):336-43 [PMID: 26791724]
  70. Toxins (Basel). 2013 Apr 29;5(5):895-911 [PMID: 23628786]
  71. Oral Microbiol Immunol. 2007 Apr;22(2):87-94 [PMID: 17311631]
  72. Dalton Trans. 2011 Feb 14;40(6):1382-6 [PMID: 21180777]
  73. J Med Entomol. 2011 Jan;48(1):39-44 [PMID: 21337946]
  74. Biopolymers. 2011;96(1):41-8 [PMID: 20560142]
  75. Nat Protoc. 2006;1(6):2876-90 [PMID: 17406547]
  76. Protein Pept Lett. 2015;22(2):119-29 [PMID: 24810226]
  77. Mar Drugs. 2016 May 19;14(5): [PMID: 27213409]
  78. Biomolecules. 2018 Apr 18;8(2): [PMID: 29670065]
  79. Int J Infect Dis. 2015 May;34:55-60 [PMID: 25748571]
  80. Front Microbiol. 2017 Jun 12;8:1048 [PMID: 28659880]
  81. Biomolecules. 2018 Jan 19;8(1): [PMID: 29351202]
  82. FEBS J. 2009 Nov;276(22):6483-96 [PMID: 19817856]
  83. J Parasitol Res. 2017;2017:3751403 [PMID: 28656101]
  84. Dalton Trans. 2019 Feb 26;48(9):2840-2860 [PMID: 30663743]
  85. Bioconjug Chem. 2017 Mar 15;28(3):793-804 [PMID: 28248495]
  86. J Enzyme Inhib Med Chem. 2009 Feb;24(1):169-75 [PMID: 18608785]
  87. PLoS One. 2015 Dec 11;10(12):e0144611 [PMID: 26656394]
  88. Molecules. 2013 Jan 15;18(1):1053-62 [PMID: 23322069]
  89. Biopolymers. 2016 May;106(3):357-67 [PMID: 26832983]

MeSH Term

Amino Acid Sequence
Animals
Antimicrobial Cationic Peptides
Bacteria
Ferrous Compounds
Leishmania
Metallocenes
Mice
Microbial Sensitivity Tests
Permeability

Chemicals

Antimicrobial Cationic Peptides
Ferrous Compounds
Metallocenes
RP-1 peptide
ferrocene

Word Cloud

Created with Highcharts 10.0.0peptideμmolL-1activity=MICferroceneFc-RP1highdiseasesnewactivecompoundRP1conjugate03concentration9neglectedproblemantimicrobialgreattoxicitybiologicalsynthesizedassaysshowedpresentedIC50drugSalsoEtestedshowingcellParasiticseriousespeciallyunderdevelopedcountriesAmongmajorparasiticLeishmaniasisfiguresurgentchallengedueincidenceseveritytimeindiscriminateuseantibioticspopulationincreasingtogetherresistancemedicinesaddressantibiotic-likemoleculesdirectlykillinhibitgrowthmicroorganismsnecessarypeptidesAMPscanhelpworkmoleculeonelowlevelsvivocoupledN-terminusderivedhumanchemokineCXCL4aimingevaluatechangemodifiesstructureusingsolidphasesynthesisSPPSCirculardichroismPBStypicalspectrumdisorderedstructuresanti-amastigoteLeishmaniaamazonensis25comparisonamphotericinBsecond-lineapprovedleishmaniasistreatment6325-foldhigherselectivityindex4agalactiaewhilstfourtimes96indicatingimprovedGram-positivebacteriadecreasedminimuminhibitoryfaecalis7coliaureuscytotoxicitycompoundsHaCaTcellssignificanthighest500μgmL-1observedpotentialpossiblecouplingincreasedvesiclepermeabilizationdirectrelationcarboxyfluoresceinreleaseindicatesactionmechanismporeformationvesiclesSeveralstudiesshowndestabilizesmembraneslipidperoxidationleadinglysisnoteworthyprototypebioconjugationstrategystillfishAntimicrobialRP-1group

Similar Articles

Cited By