Disturbed Resting-State Whole-Brain Functional Connectivity of Striatal Subregions in Bulimia Nervosa.

Li Wang, Kun Bi, Zhou Song, Zhe Zhang, Ke Li, Qing-Mei Kong, Xue-Ni Li, Qing Lu, Tian-Mei Si
Author Information
  1. Li Wang: Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
  2. Kun Bi: Key Laboratory of Child Development and Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.
  3. Zhou Song: Taiyuan Psychiatric Hospital, Taiyuan, Shanxi, China.
  4. Zhe Zhang: Taiyuan Psychiatric Hospital, Taiyuan, Shanxi, China.
  5. Ke Li: Peking University the Sixth Hospital (Institute of Mental Health); National Clinical Research Center for Mental Health Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China.
  6. Qing-Mei Kong: Peking University the Sixth Hospital (Institute of Mental Health); National Clinical Research Center for Mental Health Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China.
  7. Xue-Ni Li: Department of Radiology, 306 Hospital of People's Liberation Army, Beijing, China.
  8. Qing Lu: Key Laboratory of Child Development and Learning Science, School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.
  9. Tian-Mei Si: Peking University the Sixth Hospital (Institute of Mental Health); National Clinical Research Center for Mental Health Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing, China.

Abstract

BACKGROUND: Disturbed self-regulation, taste reward, as well as somatosensory and visuospatial processes were thought to drive binge eating and purging behaviors that characterize bulimia nervosa. Although studies have implicated a central role of the striatum in these dysfunctions, there have been no direct investigations on striatal functional connectivity in bulimia nervosa from a network perspective.
METHODS: We calculated the functional connectivity of striatal subregions based on the resting-state functional Magnetic Resonance Imaging data of 51 bulimia nervosa patients and 53 healthy women.
RESULTS: Compared with the healthy women, bulimia nervosa patients showed increased positive functional connectivity in bilateral striatal nuclei and thalamus for nearly all of the striatal subregions, and increased negative functional connectivity in bilateral primary sensorimotor cortex and occipital areas for both ventral striatum and putamen subregions. Only for the putamen subregions, we observed reduced negative functional connectivity in the prefrontal (bilateral superior and middle frontal gyri) and parietal (right inferior parietal lobe and precuneus) areas. Several striatal connectivities with occipital and primary sensorimotor cortex significantly correlated with the severity of bulimia.
CONCLUSIONS: The findings indicate bulimia nervosa-related alterations in striatal functional connectivity with the dorsolateral prefrontal cortex supporting self-regulation, the subcortical striatum and thalamus involved in taste reward, as well as the visual occipital and sensorimotor regions mediating body image, which contribute to our understanding of neural circuitry of bulimia nervosa and encourage future therapeutic developments for bulimia nervosa by modulating striatal pathway.

Keywords

References

  1. Hum Brain Mapp. 2018 Apr;39(4):1796-1804 [PMID: 29322687]
  2. Biol Psychiatry. 2011 May 1;69(9):847-56 [PMID: 21195388]
  3. Psychol Med. 2016 May;46(7):1509-22 [PMID: 26924633]
  4. World J Biol Psychiatry. 2018 Apr;19(3):210-224 [PMID: 27873550]
  5. Soc Cogn Affect Neurosci. 2016 Sep;11(9):1393-401 [PMID: 27056455]
  6. Science. 2001 Sep 28;293(5539):2470-3 [PMID: 11577239]
  7. PLoS One. 2011;6(7):e22259 [PMID: 21799807]
  8. J Cogn Neurosci. 2011 Sep;23(9):2123-34 [PMID: 20809855]
  9. J Psychiatry Neurosci. 2010 May;35(3):163-76 [PMID: 20420767]
  10. J Clin Psychiatry. 1998;59 Suppl 20:22-33;quiz 34-57 [PMID: 9881538]
  11. Biol Psychiatry. 2005 Dec 15;58(12):990-7 [PMID: 16084858]
  12. Eur Psychiatry. 2011 Oct;26(7):463-9 [PMID: 21067900]
  13. Biol Psychiatry. 2011 Oct 15;70(8):728-35 [PMID: 21718969]
  14. J Psychiatry Neurosci. 2017 Nov;42(6):414-423 [PMID: 28949286]
  15. Neuroinformatics. 2016 Jul;14(3):339-51 [PMID: 27075850]
  16. J Am Acad Child Adolesc Psychiatry. 2016 Nov;55(11):962-971.e3 [PMID: 27806864]
  17. Int J Eat Disord. 1997 Mar;21(2):187-94 [PMID: 9062843]
  18. Int J Eat Disord. 2012 Jul;45(5):648-56 [PMID: 22331810]
  19. Int J Eat Disord. 2010 May;43(4):289-94 [PMID: 19434606]
  20. Neuropsychopharmacology. 2016 Jun;41(7):1841-8 [PMID: 26647975]
  21. Am J Psychiatry. 2011 Nov;168(11):1210-20 [PMID: 21676991]
  22. Psychiatry Res Neuroimaging. 2018 Feb 28;272:38-45 [PMID: 29122402]
  23. Neurosci Lett. 2017 Jun 9;651:95-101 [PMID: 28458022]
  24. Am J Psychiatry. 2011 Jan;168(1):55-64 [PMID: 21123315]
  25. Clin Psychol Rev. 2017 Nov;57:21-31 [PMID: 28818670]
  26. Nat Neurosci. 2016 Apr;19(4):533-41 [PMID: 27021938]
  27. Lancet. 2010 Feb 13;375(9714):583-93 [PMID: 19931176]
  28. Brain Behav. 2019 Feb;9(2):e01207 [PMID: 30644179]
  29. Neurosci Biobehav Rev. 2016 Dec;71:578-589 [PMID: 27725172]
  30. Brain Nerve. 2015 Feb;67(2):183-92 [PMID: 25681363]
  31. Front Behav Neurosci. 2014 Aug 04;8:270 [PMID: 25136302]
  32. Brain Res Brain Res Rev. 1995 Jan;20(1):91-127 [PMID: 7711769]
  33. Annu Rev Neurosci. 2015 Jul 8;38:433-47 [PMID: 25938726]
  34. Eur J Neurosci. 2017 May;45(9):1129-1140 [PMID: 27992088]
  35. Neuroimage. 2011 Jun 1;56(3):1749-57 [PMID: 21419229]
  36. World J Biol Psychiatry. 2014 May;15(4):307-16 [PMID: 22540408]
  37. Dev Cogn Neurosci. 2017 Apr;24:118-128 [PMID: 28314184]
  38. Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7900-5 [PMID: 27357684]
  39. Neuroimage. 2002 Oct;17(2):825-41 [PMID: 12377157]
  40. J Am Acad Child Adolesc Psychiatry. 2013 Jun;52(6):628-41.e13 [PMID: 23702452]
  41. Cereb Cortex. 2008 Dec;18(12):2735-47 [PMID: 18400794]
  42. Appetite. 2019 May 1;136:33-49 [PMID: 30615922]
  43. Am J Psychiatry. 2013 Oct;170(10):1152-60 [PMID: 23680873]
  44. Neuroimage. 2012 Feb 1;59(3):2142-54 [PMID: 22019881]
  45. Psychopharmacology (Berl). 2007 Dec;195(3):315-24 [PMID: 17690869]
  46. Int J Eat Disord. 1997 May;21(4):313-20 [PMID: 9138041]
  47. Rev Neurol (Paris). 2012 Aug-Sep;168(8-9):569-75 [PMID: 22902172]
  48. J Am Acad Child Adolesc Psychiatry. 2019 Feb;58(2):232-241 [PMID: 30738550]
  49. Arch Gen Psychiatry. 2009 Jan;66(1):51-63 [PMID: 19124688]
  50. Magn Reson Med. 1996 Mar;35(3):346-55 [PMID: 8699946]

MeSH Term

Adolescent
Adult
Brain
Brain Mapping
Bulimia Nervosa
Case-Control Studies
Feeding Behavior
Female
Humans
Magnetic Resonance Imaging
Neural Pathways
Predictive Value of Tests
Rest
Young Adult

Word Cloud

Created with Highcharts 10.0.0bulimiafunctionalnervosastriatalconnectivitystriatumsubregionsbilateralsensorimotorcortexoccipitalDisturbedself-regulationtasterewardwellresting-statepatientshealthywomenincreasedthalamusnegativeprimaryareasputamenprefrontalparietalBulimiaBACKGROUND:somatosensoryvisuospatialprocessesthoughtdrivebingeeatingpurgingbehaviorscharacterizeAlthoughstudiesimplicatedcentralroledysfunctionsdirectinvestigationsnetworkperspectiveMETHODS:calculatedbasedMagneticResonanceImagingdata5153RESULTS:ComparedshowedpositivenucleinearlyventralobservedreducedsuperiormiddlefrontalgyrirightinferiorlobeprecuneusSeveralconnectivitiessignificantlycorrelatedseverityCONCLUSIONS:findingsindicatenervosa-relatedalterationsdorsolateralsupportingsubcorticalinvolvedvisualregionsmediatingbodyimagecontributeunderstandingneuralcircuitryencouragefuturetherapeuticdevelopmentsmodulatingpathwayResting-StateWhole-BrainFunctionalConnectivityStriatalSubregionsNervosafMRI

Similar Articles

Cited By