Approximate Bayesian inference in semi-mechanistic models.

Andrej Aderhold, Dirk Husmeier, Marco Grzegorczyk
Author Information
  1. Andrej Aderhold: 1School of Mathematics and Statistics, Glasgow University, Glasgow, UK.
  2. Dirk Husmeier: 1School of Mathematics and Statistics, Glasgow University, Glasgow, UK.
  3. Marco Grzegorczyk: 2Johann Bernoulli Institute (JBI), Groningen University, Groningen, The Netherlands.

Abstract

Inference of interaction networks represented by systems of differential equations is a challenging problem in many scientific disciplines. In the present article, we follow a semi-mechanistic modelling approach based on gradient matching. We investigate the extent to which key factors, including the kinetic model, statistical formulation and numerical methods, impact upon performance at network reconstruction. We emphasize general lessons for computational statisticians when faced with the challenge of model selection, and we assess the accuracy of various alternative paradigms, including recent widely applicable information criteria and different numerical procedures for approximating Bayes factors. We conduct the comparative evaluation with a novel inferential pipeline that systematically disambiguates confounding factors via an ANOVA scheme.

Keywords

References

  1. Mol Syst Biol. 2012 Mar 06;8:574 [PMID: 22395476]
  2. Cold Spring Harb Symp Quant Biol. 2007;72:353-63 [PMID: 18419293]
  3. J R Soc Interface. 2012 Apr 7;9(69):744-56 [PMID: 21880617]
  4. Radiology. 1982 Apr;143(1):29-36 [PMID: 7063747]
  5. Stat Appl Genet Mol Biol. 2015 Apr;14(2):143-67 [PMID: 25719342]
  6. Bull Math Biol. 2000 Mar;62(2):247-92 [PMID: 10824430]
  7. BMC Syst Biol. 2013 Mar 19;7:23 [PMID: 23506153]
  8. J Comput Biol. 2002;9(1):67-103 [PMID: 11911796]
  9. J R Soc Interface. 2009 Feb 6;6(31):187-202 [PMID: 19205079]
  10. Stat Appl Genet Mol Biol. 2014 Jun;13(3):227-73 [PMID: 24864301]
  11. Bioinformatics. 2008 Mar 15;24(6):833-9 [PMID: 18057018]
  12. Mol Syst Biol. 2010 Sep 21;6:416 [PMID: 20865009]
  13. PLoS Comput Biol. 2014 Jul 17;10(7):e1003705 [PMID: 25033214]
  14. Genome Biol. 2006;7(3):R25 [PMID: 16584535]
  15. J Mol Evol. 1994 Sep;39(3):306-14 [PMID: 7932792]
  16. Open Biol. 2015 Oct;5(10): [PMID: 26468131]
  17. Bioinformatics. 2014 Sep 1;30(17):i468-74 [PMID: 25161235]
  18. Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18507-12 [PMID: 25512544]
  19. Nat Methods. 2012 Jul 15;9(8):796-804 [PMID: 22796662]

Word Cloud

Created with Highcharts 10.0.0modelfactorsInferencesemi-mechanisticincludingnumericalselectionapplicableinformationcriteriaANOVABayesianinteractionnetworksrepresentedsystemsdifferentialequationschallengingproblemmanyscientificdisciplinespresentarticlefollowmodellingapproachbasedgradientmatchinginvestigateextentkeykineticstatisticalformulationmethodsimpactuponperformancenetworkreconstructionemphasizegenerallessonscomputationalstatisticiansfacedchallengeassessaccuracyvariousalternativeparadigmsrecentwidelydifferentproceduresapproximatingBayesconductcomparativeevaluationnovelinferentialpipelinesystematicallydisambiguatesconfoundingviaschemeApproximateinferencemodelsMarkovjumpprocessesNetworkSemi-mechanisticSystemsbiologyWidelyWAICWBIC

Similar Articles

Cited By