Deletion of Btg1 Induces Prmt1-Dependent Apoptosis and Increased Stemness in Shh-Type Medulloblastoma Cells Without Affecting Tumor Frequency.

Manuela Ceccarelli, Giorgio D'Andrea, Laura Micheli, Felice Tirone
Author Information
  1. Manuela Ceccarelli: Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy.
  2. Giorgio D'Andrea: Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy.
  3. Laura Micheli: Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy.
  4. Felice Tirone: Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Rome, Italy.

Abstract

About 30% of medulloblastomas (MBs), a tumor of the cerebellum, arise from cerebellar granule cell precursors (GCPs) undergoing transformation following activation of the Sonic hedgehog (Shh) pathway. To study this process, we generated a new MB model by crossing heterozygous ( ) mice, which develop spontaneous Shh-type MBs, with mice lacking B-cell translocation gene 1 (), a regulator of cerebellar development. In MBs developing in mice, deletion of does not alter tumor and lesion frequencies, nor affect the proliferation of neoplastic precursor cells. However, in both tumors and lesions arising in mice, ablation of increases by about 25% the apoptotic neoplastic precursor cells, as judged by positivity to activated caspase-3. Moreover, although ablation in early postnatal GCPs, developing in the external granule cell layer, leads to a significant increase of proliferation, and decrease of differentiation, relative to wild-type, no synergy occurs with the mutation. However, deletion greatly increases apoptosis in postnatal GCPs, with strong synergy between -null and mutations. That pronounced increase of apoptosis observed in knockout young or neoplastic GCPs may be responsible for the lack of effect of ablation on tumorigenesis. This increased apoptosis may be a consequence of increased expression of protein arginine methyltransferase 1 (Prmt1) protein that we observe in knockout/ MBs. In fact, apoptotic genes, such as , are targets of Prmt1. Moreover, in -null MBs, we observed a two-fold increase of cells positive to CD15, which labels tumor stem cells, raising the possibility of activation of quiescent tumor cells, known for their role in long-term resistance to treatment and relapses. Thus, appears to play a role in cerebellar tumorigenesis by regulating the balance between apoptosis and proliferation during MB development, also influencing the number of tumor stem cells.

Keywords

References

  1. Immunology. 1997 May;91(1):121-9 [PMID: 9203975]
  2. EMBO J. 1992 Apr;11(4):1663-70 [PMID: 1373383]
  3. Transl Oncol. 2009 Dec;2(4):247-57 [PMID: 19956386]
  4. BMC Bioinformatics. 2012 Jun 18;13:134 [PMID: 22708584]
  5. Mol Biol Rep. 2014 Sep;41(9):5979-88 [PMID: 24985971]
  6. J Immunol. 2003 Dec 1;171(11):5802-11 [PMID: 14634089]
  7. Oncol Rep. 2013 Nov;30(5):2137-44 [PMID: 23982470]
  8. Neuroimaging Clin N Am. 2017 Feb;27(1):1-37 [PMID: 27889018]
  9. J Neurosci. 2010 Oct 27;30(43):14430-9 [PMID: 20980600]
  10. Nat Rev Cancer. 2007 Nov;7(11):834-46 [PMID: 17957189]
  11. Oncotarget. 2015 Aug 14;6(23):19685-705 [PMID: 26050197]
  12. Front Neurosci. 2012 Aug 30;6:124 [PMID: 22969701]
  13. Science. 1997 Aug 22;277(5329):1109-13 [PMID: 9262482]
  14. Front Neurosci. 2013 Jan 24;6:198 [PMID: 23355800]
  15. J Cell Biol. 2004 Jan 19;164(2):175-84 [PMID: 14734530]
  16. FASEB J. 2007 Jul;21(9):2215-25 [PMID: 17371797]
  17. Neurobiol Dis. 2015 Nov;83:35-43 [PMID: 26319366]
  18. Cancer Res. 2003 Sep 15;63(18):5821-8 [PMID: 14522905]
  19. Oncol Rep. 2019 Mar;41(3):1691-1699 [PMID: 30569144]
  20. Cell Stem Cell. 2009 May 8;4(5):440-52 [PMID: 19427293]
  21. Genes Dev. 2009 Jan 15;23(2):157-70 [PMID: 19171780]
  22. Cancer Res. 2009 Jun 1;69(11):4682-90 [PMID: 19487286]
  23. Genes Dev. 1999 Jul 1;13(13):1647-52 [PMID: 10398678]
  24. Stem Cells. 2014 Jul;32(7):1968-82 [PMID: 24604711]
  25. Gene Expr Patterns. 2003 Aug;3(4):389-95 [PMID: 12915300]
  26. Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6062-7 [PMID: 15075390]
  27. J Comp Neurol. 1966 Oct;128(2):191-208 [PMID: 5970298]
  28. Neuron. 1999 Jan;22(1):103-14 [PMID: 10027293]
  29. PLoS One. 2018 Mar 14;13(3):e0194206 [PMID: 29538458]
  30. J Neurochem. 2017 Sep;142(6):901-907 [PMID: 28695568]
  31. J Cell Physiol. 2019 May;234(5):5379-5389 [PMID: 30350856]
  32. Cancer Cell. 2008 Aug 12;14(2):135-45 [PMID: 18691548]
  33. J Exp Clin Cancer Res. 2019 Feb 8;38(1):64 [PMID: 30736843]
  34. J Child Neurol. 2008 Oct;23(10):1149-59 [PMID: 18952581]
  35. J Biol Chem. 1996 Jun 21;271(25):15034-44 [PMID: 8663146]
  36. Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6085-90 [PMID: 21444773]
  37. Nature. 2004 Nov 18;432(7015):396-401 [PMID: 15549107]
  38. Oncogene. 2005 Mar 3;24(10):1698-710 [PMID: 15674337]
  39. J Comp Neurol. 1971 Mar;141(3):283-312 [PMID: 4101340]
  40. Lab Invest. 1998 Jul;78(7):847-58 [PMID: 9690562]
  41. Dev Dyn. 2008 Aug;237(8):2158-69 [PMID: 18651656]
  42. J Neurosci. 2004 Mar 31;24(13):3355-69 [PMID: 15056715]
  43. Cancer Cell. 2008 Aug 12;14(2):123-34 [PMID: 18691547]
  44. Development. 2005 May;132(10):2425-39 [PMID: 15843415]
  45. Mol Med Rep. 2014 Jun;9(6):2374-80 [PMID: 24714932]
  46. Trends Cell Biol. 2010 Jan;20(1):14-24 [PMID: 19879762]
  47. Curr Biol. 1999 Apr 22;9(8):445-8 [PMID: 10226030]
  48. Genes Dev. 1994 Sep 1;8(17):2008-21 [PMID: 7958874]
  49. Tumour Biol. 2014 Dec;35(12):11771-9 [PMID: 25173640]
  50. Nat Rev Neurosci. 2001 Jul;2(7):484-91 [PMID: 11433373]
  51. J Neuropathol Exp Neurol. 1970 Oct;29(4):583-600 [PMID: 5471923]
  52. Cancer Cell. 2014 Jul 14;26(1):33-47 [PMID: 24954133]
  53. Nucleic Acids Res. 2017 Jan 4;45(D1):D777-D783 [PMID: 27899578]
  54. Cancer Cell. 2009 Feb 3;15(2):135-47 [PMID: 19185848]
  55. Exp Toxicol Pathol. 2013 Sep;65(6):863-73 [PMID: 23369240]
  56. J Neurosci. 2012 Oct 31;32(44):15547-64 [PMID: 23115191]
  57. J Cell Biochem. 2019 Aug;120(8):13310-13320 [PMID: 30916818]
  58. Mol Oncol. 2010 Oct;4(5):420-30 [PMID: 20801091]
  59. Development. 1999 Jun;126(14):3089-100 [PMID: 10375501]
  60. J Biol Chem. 1998 Aug 28;273(35):22563-9 [PMID: 9712883]
  61. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  62. Int J Mol Med. 2015 Mar;35(3):777-83 [PMID: 25571854]
  63. J Cell Physiol. 2015 Dec;230(12):2881-90 [PMID: 25967096]
  64. Crit Rev Oncol Hematol. 2016 Sep;105:35-51 [PMID: 27375228]
  65. J Cell Physiol. 2000 Mar;182(3):311-22 [PMID: 10653597]
  66. Int J Mol Sci. 2013 Sep 27;14(10):19670-80 [PMID: 24084718]
  67. J Cell Physiol. 2001 May;187(2):155-65 [PMID: 11267995]
  68. Oncogene. 2002 Oct 24;21(49):7580-4 [PMID: 12386820]
  69. Neoplasia. 2004 Jan-Feb;6(1):1-6 [PMID: 15068665]
  70. Dev Biol. 2015 Dec 1;408(1):109-25 [PMID: 26524254]
  71. Nature. 2010 Dec 23;468(7327):1095-9 [PMID: 21150899]
  72. J Neurosci Res. 2003 Aug 1;73(3):400-9 [PMID: 12868073]
  73. Tumour Biol. 2014 Apr;35(4):2949-57 [PMID: 24264312]
  74. Front Pharmacol. 2016 Dec 16;7:484 [PMID: 28018222]
  75. Oncogene. 2004 Aug 12;23(36):6156-62 [PMID: 15195141]
  76. Int J Oncol. 2014 Oct;45(4):1574-82 [PMID: 25017022]
  77. Cell Struct Funct. 2019;44(1):29-39 [PMID: 30787206]
  78. J Biol Chem. 2000 Jan 7;275(1):147-53 [PMID: 10617598]
  79. Exp Cell Res. 1999 Jun 15;249(2):337-48 [PMID: 10366433]
  80. Nat Med. 1998 May;4(5):619-22 [PMID: 9585239]

Word Cloud

Created with Highcharts 10.0.0cellsMBstumorapoptosisGCPsmice1proliferationneoplasticcerebellargranulecellablationincreaseproteinPrmt1cerebellumprecursorsactivationSonichedgehogShhMBB-celltranslocationgenedevelopmentdevelopingdeletionprecursorHoweverincreasesapoptoticMoreoverpostnatalsynergy-nullobservedmaytumorigenesisincreasedargininemethyltransferasestemroleBtg130%medulloblastomasariseundergoingtransformationfollowingpathwaystudyprocessgeneratednewmodelcrossingheterozygousdevelopspontaneousShh-typelackingregulatoralterlesionfrequenciesaffecttumorslesionsarising25%judgedpositivityactivatedcaspase-3althoughearlyexternallayerleadssignificantdecreasedifferentiationrelativewild-typeoccursmutationgreatlystrongmutationspronouncedknockoutyoungresponsiblelackeffectconsequenceexpressionobserveknockout/factgenestargetstwo-foldpositiveCD15labelsraisingpossibilityquiescentknownlong-termresistancetreatmentrelapsesThusappearsplayregulatingbalancealsoinfluencingnumberDeletionInducesPrmt1-DependentApoptosisIncreasedStemnessShh-TypeMedulloblastomaCellsWithoutAffectingTumorFrequencyneurogenesismedulloblastoma

Similar Articles

Cited By